Flexible Covariate Adjustments in Regression

Discontinuity Designs

Claudia Noack Tomasz Olma Christoph Rothe

Abstract

Empirical regression discontinuity (RD) studies often include covariates in their
specifications to increase the precision of their estimates. In this paper, we propose
a novel class of estimators that use such covariate information more efficiently than
existing methods and can accommodate many covariates. Our estimators are sim-
ple to implement and involve running a standard RD analysis after subtracting a
function of the covariates from the original outcome variable. We characterize the
function of the covariates that minimizes the asymptotic variance of these estima-
tors. We also show that the conventional RD framework gives rise to a special
robustness property which implies that the optimal adjustment function can be
estimated flexibly via modern machine learning techniques without affecting the
first-order properties of the final RD estimator. We demonstrate our methods’
scope for efficiency improvements by reanalyzing data from a large number of re-

cently published empirical studies.
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1. INTRODUCTION

Regression discontinuity (RD) designs are widely used for estimating causal effects from
observational data in economics and other social sciences. The design exploits the fact
that in many contexts a unit’s treatment status is determined by whether its realization of
a running variable exceeds some known cutoff value. For example, students might qualify
for a scholarship if their GPA is above some threshold. Under continuity conditions on the
distribution of potential outcomes, the average treatment effect at the cutoff is identified
by the jump in the conditional expectation of the outcome given the running variable at
the cutoff. Estimation and inference methods based on local linear regression are widely
used and their properties are by now well understood (e.g., Hahn et al., 2001; Imbens
and Kalyanaraman, 2012; Calonico et al., 2014; Armstrong and Kolesér, 2020).

While an RD analysis generally does not require data beyond the outcome and the
running variable, additional covariate information can be used to reduce the variance of
empirical estimates. A common approach is to include the covariates linearly and without
separate localization in a local linear RD regression (Calonico et al., 2019). This conven-
tional linear adjustment estimator is consistent without functional form assumptions on
the underlying conditional expectations if the covariates are unaffected by the treatment
in some appropriate sense. It does not exploit the available covariate information effi-
ciently though, and is also not well-suited for settings with many covariates.

In this paper, we propose a novel class of flexible covariate-adjusted RD estimators.
Our approach involves running a standard local linear RD regression after subtracting an
(estimated) function of the covariates from the original outcome variable. We characterize
the function that leads to the RD estimator with the smallest asymptotic variance and
show how this function can be estimated with modern machine learning techniques. We
also show that the conventional RD framework gives rise to a special robustness property
which implies our final RD estimator is very insensitive to estimation uncertainty about
the estimated adjustment function. This implies, for example, that existing methods for
bandwidth choice and inference can directly be used with our adjusted outcome variable.
Our approach is thus easily implemented with existing software packages.

To motivate our proposed procedure, let Y; and Z; denote the outcome and covariates,
respectively, of observational unit . Then the conventional linear adjustment RD estima-
tor is asymptotically equivalent to a local linear RD estimator with the modified outcome
variable Y; — Z. o, where v, is a vector of projection coefficients. We consider general-
izations of such estimators which replace the linearly adjusted outcome with a flexibly
adjusted outcome of the form Y; — n(Z;), for some generic function 1. Such estimators
are easily seen to be consistent for any fixed 7 if the distribution of the covariates varies

smoothly around the cutoff in some appropriate sense, which is in line with the notion



of the covariates being unaffected by the treatment in a causal sense.! We show that
the asymptotic variance in this class of estimators is minimized over 7 by the average of
the two conditional expectations of the outcome variable given the running variable and
the covariates just above and below the cutoff. This optimal adjustment function 7y is
generally nonlinear and unknown in practice but can be estimated from the data.

Our proposed estimators hence take the form of a local linear RD regression with
generated outcome Y; — 7)(Z;), where 7 is some estimate of 7y obtained in a preliminary
stage. We implement such estimators with cross-fitting (e.g., Chernozhukov et al., 2018),
which is an efficient form of sample splitting that removes the bias induced by overfitting
in the first stage and can accommodate a wide range of estimators of the optimal adjust-
ment function. In particular, one can use modern machine learning methods like lasso
regression, random forests, deep neural networks, or ensemble combinations thereof, to
estimate the optimal adjustment function. In low-dimensional settings, researchers can
also use classical nonparametric approaches like local polynomials or series regression, or
estimators based on parametric specifications.

Our theory does not require that 7 is consistently estimated for valid inference on the
RD parameter. We only require that in large samples the first-stage estimates concentrate
in a mean-square sense around some deterministic function 7, which could in principle
be different from 7y. The rate of this convergence can be arbitrarily slow. Our setup
can allow for this kind of potential misspecification because our proposed RD estimators
are highly insensitive to estimation errors in the preliminary stage. Specifically, they are
constructed as sample analogues of a moment function that contains 7, as a nuisance
function, but does not vary with it: as discussed above, our parameter of interest is
equal to the jump in the conditional expectation of Y; — n(Z;) given the running variable
at the cutoff for any fixed function n. This insensitivity property is related to Neyman
orthogonality, which features prominently in many modern two-stage estimation methods
(e.g., Chernozhukov et al., 2018), but here it is a global rather than a local property and
has therefore substantially stronger implications.?

Our theoretical analysis shows that, under the conditions outlined above, our proposed

RD estimator is first-order asymptotically equivalent to a local linear “no covariates” RD

We note that the adjustment function must be the same for observations on either side of the cutoff,
as using different adjustments on either side of the cutoff would generally yield inconsistent RD estimates
(Calonico et al., 2019).

2A moment function is Neyman orthogonal if its first functional derivative with respect to the nuisance
function is zero. In contrast, the (conditional) moment function on which our estimates are based is fully
invariant with respect to the nuisance function. Chernozhukov et al. (2018) give examples of setups
with (unconditional) moment functions in which such a global insensitivity property occurs. These
include optimal instrument problems, certain partial linear models, and treatment effect estimation
under unconfoundedness with known propensity score. This property also occurs generally if one of the
two nuisance functions in a doubly robust moment condition (cf. Robins and Rotnitzky, 2001) is known.



estimator with Y; — 7(Z;) as the dependent variable. This result is then used to study
its asymptotic bias and variance, and to derive an asymptotic normality result. The
asymptotic variance of our estimator depends on the function 77 and achieves its minimum
value if 77 = ng (that is if 7 is consistently estimated in the first stage), but the variance
can be estimated consistently irrespective of whether or not that is the case. As our result
does not require a particular rate of convergence for the first step estimate of 7y, our RD
estimator can be seen as shielded from the “curse of dimensionality” to some degree, and
can hence be expected to perform well in settings with many covariates. We show that
these results also extend to fuzzy RD designs in a straightforward manner.

Practical issues like bandwidth choice and construction of confidence intervals can
be addressed in a straightforward manner. Specifically, we show that standard methods
remain valid if they are applied to a data set in which the outcome Y; is replaced with the
generated outcome Y; — 1)(Z;) and one ignores that 7 has been estimated. Our approach
can therefore easily be integrated into existing software packages.

Our theoretical results are qualitatively similar to those that have been obtained for
efficient influence function (EIF) estimators of the population average treatment effect in
simple randomized experiments with known and constant propensity scores (e.g., Wager
et al., 2016). Such parallels arise because EIF estimators are also based on a moment
function that is globally invariant with respect to a nuisance function. In fact, we argue
that our RD estimator is in many ways a direct analogue of the EIF estimator, and that
the variance it achieves under the optimal adjustment function is similar in structure to
the semiparametric efficiency bound in simple randomized experiments.

Our proposed flexible covariate adjustments can lead to substantial efficiency gains in
practice. To illustrate this, we collect data from empirical papers recently published in
leading journals that use RD estimation with covariates. In total, we reanalyze 56 spec-
ifications from 16 papers, and study how different types of covariate adjustments affect
confidence interval lengths. Including covariates in the RD regression does not meaning-
fully reduce the length of the confidence intervals in about half of the specifications we
consider irrespective of the specific method used for adjustment, but our proposed flexible
adjustments also achieve a reduction of more than 30% in one setting. To put this into
perspective, obtaining this reduction would require roughly increasing the sample size by
a factor of 2.4 if the covariates were not used. We also observe that linear adjustments
alone are often unable to exhaust all the available covariate information: the largest re-
duction in the confidence interval length from using our flexible adjustment relative to
linear adjustments exceeds 20%.

We also conduct simulations based on the data set from one of the papers from our

empirical literature survey. In order to cover all types of settings from our empirical



literature survey, we consider simulation setups of large sample sizes and a moderate
number of covariates as well as small sample sizes and a varying number of covariates.
Our proposed RD estimators perform very well in all these settings, in the sense that
their standard errors are close to their standard deviations and the associated confidence

intervals have simulated coverage rate close to the nominal one.

Related Literature. Our paper contributes to an extensive literature on estimation
and inference in RD designs; see, e.g., Imbens and Lemieux (2008) and Lee and Lemieux
(2010) for surveys, and Cattaneo et al. (2019) for a textbook treatment. Different ad-
hoc methods for incorporating covariates into an RD analysis have long been used in
empirical economics (see, e.g., Lee and Lemieux, 2010, Section 3.2.3). Following Calonico
et al. (2019), it has become common practice to include covariates without localization
into the usual local linear regression estimator. Our approach nests this estimator as a
special case, but is generally more efficient. Other closely related papers are Kreifl and
Rothe (2023) and Arai et al. (2024), who extend the approach in Calonico et al. (2019)
to settings with high-dimensional covariates under sparsity conditions using the lasso. In
contrast, our approach allows for flexible use of other machine learning methods in the
spirit of double-debiased machine learning of Chernozhukov et al. (2018). Moreover, even
if one commits to lasso-based adjustments, there are two ways in which our approach can
improve upon the methods of Kreifl and Rothe (2023) and Arai et al. (2024). First, we
propose a different variant of (post-) lasso adjustments that can be more stable in finite
samples (see “global adjustments” in Section 3.3). Second, cross-fitting yields a more
precise standard error even if the number of selected covariates is not small relative to
the effective sample size. Frolich and Huber (2019) propose to incorporate covariates into
an RD analysis in a fully nonparametric fashion, but their approach is generally affected
by the curse of dimensionality, and is thus unlikely to perform well in practice.

Our results are also related in a more general sense to the vast literature on two-step
estimation problems with infinite-dimensional nuisance parameters (e.g., Andrews, 1994;
Newey, 1994), especially the recent strand that exploits Neyman orthogonal (or debiased)
moment functions and cross-fitting (e.g., Belloni et al., 2017; Chernozhukov et al., 2018).
The latter literature focuses mostly on regular (root-n estimable) parameters, while our
RD treatment effect is a non-regular (nonparametric) quantity. Some general results on
non-regular estimation based on orthogonal moments are derived in Chernozhukov et al.
(2022), and specific results for estimating conditional average treatment effects in models
with unconfoundedness are given, for example, in Kennedy et al. (2017), Kennedy (2023)
and Fan et al. (2020). Our results are qualitatively different because, as explained above,
our estimator is based on a moment function that satisfies a property that is stronger

than Neyman orthogonality.



Finally, our work is linked to the literature on inference in randomized experiments
with covariates (e.g., Freedman, 2008a,b; Lin, 2013; Wager et al., 2016; Lei and Ding,
2021; Chiang et al., 2023; Chang et al., 2024).

Plan of the Paper. The remainder of this paper is organized as follows. In Section 2,
we introduce the setup and review existing procedures. In Section 3, we describe our
proposed covariate-adjusted RD estimator, and we present our main theoretical results
in Section 4. Further extensions are discussed in Section 5. We present our empirical
results in Section 6 and simulation results in Section 7. Section 8 concludes. The proofs
of our main results are given in Appendix A. Appendix B formally studies the proposed
inference procedures and Appendix C gives details on our literature survey. The Online

Supplement contains additional empirical and simulation results.

2. SETUP AND PRELIMINARIES

2.1. Model and Parameter of Interest. We begin by considering sharp RD designs.
The data {W; }ici) = {(Yi, Xi, Zi) }icpn), where [n] = {1,...,n}, are an i.i.d. sample of size
n from the distribution of W = (Y, X, Z). Here, Y; € R is the outcome variable, X; € R is
the running variable, and Z; € R? is a (possibly high-dimensional) vector of covariates.?
Units receive the treatment if and only if the running variable exceeds a known threshold,
which we normalize to zero without loss of generality. We denote the treatment indicator
by T;, so that T; = 1{X; > 0}. The parameter of interest is the height of the jump in
the conditional expectation function of the observed outcome variable given the running
variable at zero:

T =E[Y;|X; =01 - E[Y}|X; =071, (2.1)

where we use the notation that f(07) = lim, o f(z) and f(07) = lim,y f(2) are the right
and left limit, respectively, of a generic function f(x) at zero. In a potential outcomes
framework, the parameter 7 coincides with the average treatment effect of units at the

cutoff under certain continuity conditions (Hahn et al., 2001).

2.2. Standard RD Estimator. Without the use of covariates, the parameter 7 is typ-
ically estimated by running separate local linear regressions (Fan and Gijbels, 1996) on

each side of the cutoff. That is, the baseline no covariates RD estimator takes the form

n

Toaee () = €] argmin Y K, (X,)(Y; — S B)%, (2:2)
FERt

3Throughout the paper, we assume that the distribution of the running variable X; is fixed, but we
allow the conditional distribution of (Y;, Z;) given X; to change with the sample size in our asymptotic
analysis. In particular, we allow the dimension of Z; to grow with n in order to accommodate high-
dimensional settings, but we generally leave such dependence on n implicit in our notation.



where S; = (T;, X;, T; X;, 1) T, Ky(v) = K(v/h)/h with K(-) a kernel function and h > 0
a bandwidth, and e; = (1,0,0,0)" is the first unit vector. This estimator is a linear
smoother that can also be written as a weighted sum of the realizations of the outcome

variable,
%}ase(hf) - Zw’L(h)}/;?
i=1

where the w;(h) are local linear regression weights that depend on the data through the
realizations of the running variable only; see Appendix A.1 for an explicit expression.
Under standard conditions (e.g. Hahn et al., 2001), which include a continuously
distributed running variable and that the bandwidth A tends to zero at an appropriate
rate, the estimator 7,,..(h) is approximately normally distributed in large samples under

conventional pointwise asymptotics, with bias of order h? and variance of order (nh)™!:
ﬁase(h) rgJ N (T + h2BbaseJ (nh)il‘/base) . (23)

Here “~” indicates a finite-sample distributional approximation justified by an asymptotic

normality result, and the bias and variance terms are given, respectively, by

By g (E[Y;|X; = 2][ogs — O?E[Y;|X; = 2][s—o-) and
K
Viewe = —— (VY| X; = 0] + V[Y;| X; = 07]).
e = e (VY = 0] 4 VX, = 07)
The terms 7 and & are kernel constants, defined as v = (v — 1i53)/(aity — V3) for

vy = [TV K(v)dv and & = [T (K (v)(nv — 2))?dv/ (i — 77)?, and fx denotes the
density of X;. Practical methods for inference based on approximations like (2.3) are

discussed, for instance, by Calonico et al. (2014) and Armstrong and Kolesar (2020).

2.3. Conventional Linear Adjustment Estimator. If covariates are available, they

4 The arguably most

can be used to improve the accuracy of empirical RD estimates.
popular strategy (Calonico et al., 2019) is to include them linearly and without kernel

localization in the local linear regression (2.2):

Tun(h) = €] argmin Y K, (X;)(Y; = S8 — Z7)%. (2.4)
By i;
By simple least squares algebra, this “linear adjustment” estimator can be written as

a no covariates estimator with covariate-adjusted outcome Y; — Z,'4),, where 7, is the

4Throughout the paper, we focus on settings in which covariates are included to improve estimation
efficiency and not to restore identification of the RD parameter by making the design more plausible.



minimizer with respect to 7 in (2.4):

Fn(h) = wah)m — Z[ ).

The linear adjustment estimator is consistent for the RD parameter without functional
form assumptions on the underlying conditional expectations if the covariates are pre-
determined, in the sense that they are not causally affected by the treatment, and thus
their conditional expectation given the running variable varies smoothly around the cutoff.

Moreover, if E[Z;|X; = z] is twice continuously differentiable around the cutoff, then
?lzn(h) ,.LL N (7_ + thbasea (nh)_l‘/zzn)

under pointwise asymptotics and regularity conditions analogous to those for the no
covariates estimator. Here the bias term B,,.. is the same as that of the no covariates
estimator and the new variance term is

K
fx(0)

where 7, a non-random vector of projection coefficients, is the probability limit of 7.

Vi = (VIY; = Z 50| Xs = 0F] + V[Y; = Z | X; = 07)),

The first-order asymptotic properties of 7., (h) are thus the same as that of its infea-
sible counterpart 7., (h) = Y., w;(h)(Y; — Z; ) that uses the population projection
coefficients 7y instead of their estimates 74, to create the adjusted outcome variable. As
Viin < Vieee under standard conditions (Kreif and Rothe, 2023, Remark 3.5), including
a fixed number of covariates generally increases the precision of the estimator in large
samples. To construct standard errors and confidence intervals, one can then use methods
developed for the no covariates case, replacing the original outcome Y; with the adjusted
outcome Y; — Z7, in the respective formulas (Calonico et al., 2019; Armstrong and

Kolesér, 2018). For instance, a nearest-neighbor standard error se;,(h) of 7,,,(h) is

2

- - A R 1 ~

sen.(h) =Y wi(h)’6},,, Gl = il ((Yi — Z3n) — 72— ZJ-TWh)) - (2.5)
i=1 jeRi

=V(Y;— Z 7| X;), R > 1is a (small) fixed integer, and

R; is the set that contains the indices of the R nearest neighbors of unit ¢ in terms of

Here 67, is an estimate of o7

1,lin

their realization of the running variable among units on the same side of the cutoft.

3. FLEXIBLE COVARIATE ADJUSTMENTS

3.1. Motivation. While linear adjustments are easy to implement, they might not exploit

the available covariate information efficiently. Inference might also not be reliable with



linear adjustments if the number of covariates is large relative to the effective sample
size.> In this paper, we propose a new method to address these issues. It allows for
general nonlinear covariate adjustments and can accommodate regularization methods in
the estimation of the adjustment terms.

To motivate our flexible covariate adjustments, recall that the linear adjustment esti-
mator is asymptotically equivalent to a no covariates RD estimator of the form in (2.2)
that uses the covariate-adjusted outcome Y; — Z v, instead of the original outcome Y;.
We generalize this by considering a class of estimators with covariate-adjusted outcomes

based on potentially nonlinear adjustment functions »:
7(h;n) = Zwi(h)Mi(n), M;(n) = Y; —n(Z;). (3.1)

We note that the adjustment function must be the same for observations on either side
of the cutoff, as using different adjustments on either side of the cutoff would generally
yield inconsistent RD estimates (Calonico et al., 2019).

If the covariates are predetermined, their conditional distribution given the running
variable should vary smoothly around the cutoff. We formalize this notion by assuming
that for every adjustment function 7, the function E[n(Z;)|X; = z] is twice continuously

differentiable around the cutoff.® This assumption implies that
T = E[M;(n)|X; = 0%] — E[M;(n)|X; = 07] for all 5. (3.2)

The estimator 7(h;n) can thus be seen as a sample analog estimator based on the moment
condition (3.2), which identifies 7 and is globally invariant with respect to the adjustment

function n. Because of this global invariance, we expect that
Flhin) 2 N(T +h2B,.., (nh)—lwn)). (3.3)

for every n under standard regularity conditions. Under these pointwise asymptotics, the
bias term in (3.3) is again that of the baseline no covariates estimator as it does not

depend on the adjustment function due to the assumed smoothness of E[n(Z;)|X; = z].

5If there are many covariates relative to the number of observations that receive positive kernel weights
in (2.4), the standard error in (2.5) is generally downward biased. This bias occurs because the local
empirical variances 07,,, are typically smaller than their population counterparts o7, in such cases
due to overfitting. If the number of covariates exceeds the number of observations with positive kernel
weights, the estimator in equation (2.4) is of course not even well-defined in the first place.

60ur analysis only rules out adjustment functions that do not satisfy certain technical regularity
conditions, such as functions for which the respective conditional expectation does not exist in the first
place. Assuming smoothness of E[n(Z;)|X; = z] for (essentially) all n is stronger than only assuming
smoothness of E[Z;|X; = ], as in Calonico et al. (2019). Our stronger assumption, however, is still very
much in line with the notion of covariates being predetermined.



On the other hand, the variance term in (3.3) does depend on 7, and is given by
R
fx(0)

To maximize the precision of the estimator 7(h;n) for any particular bandwidth h, we

V(n) (VIMi(n)|X; = 07] + V[M;(n)| X; = 07]).

want to choose 7 such that V() is as small as possible. Our analysis below shows that
using the equally-weighted average of the left and right limits of the “long” conditional
expectation function E[Y;|X; = x,Z; = 2| at the cutoff achieves this goal. That is, we
show that

Vi(n) = V(no) for all n,

where

(i () + 5 (2), pi(2) =E[YVilX: = 0, Zi = 2] for w € {,—}.  (3.4)

N | —

mo(z) =

As the optimal adjustment function 79 is generally unknown in practice, we propose to

estimate the RD parameter 7 by a feasible version of 7(h;no).

3.2. Proposed Estimator and its General Properties. Our proposed estimator re-
quires a first-stage estimate of the optimal adjustment function, which does not have
to be of a particular type: practitioners can use classical nonparametric or modern ma-
chine learning methods to reduce the risk of model misspecification, or choose suitable
parametric methods (conventional linear adjustments can be seen as a special case of the
latter type). Our proposed estimator also uses cross-fitting, which is an efficient form
of sample splitting that prevents overfitting of the estimated adjustment function and
avoids unrealistic empirical process conditions in the theoretical analysis (Chernozhukov

et al., 2018). Specifically, our estimator is computed in two steps:

1. Randomly split the data {W;}c}n into S folds of equal size, collecting the corre-
sponding indices in the sets I, for s € [S]. In practice, S = 5 or S = 10 are
common choices for the number of cross-fitting folds. Let 7(z) = 7(2z; {W;}icm))
be the researcher’s preferred estimator of 7, calculated on the full sample; and let
ns(2) = N(z;{Witiere), for s € [S], be a version of this estimator that only uses
data outside the sth fold.

2. Estimate 7 by computing a local linear no covariates RD estimator that uses the
adjusted outcome M;(7ss)) = Yi — 15:)(Z;) as the dependent variable, where s(i)

denotes the fold that contains observation ¢:

A(ls) = 3w M)

10



Our theoretical analysis below shows that under weak conditions the estimator 7(h; )
is asymptotically equivalent to the infeasible estimator 7(h; ) = >\ w;(h)M;(77), where
7 is a deterministic approximation of 77 whose error vanishes in large samples in some
appropriate sense. Importantly, our approach does not require the first-stage estimator
of 1y to be consistent, in the sense that we allow for the possibility that 1 # 7y. The
first-stage estimator also does not have to converge with a particularly fast rate. In view
of (3.3), it then holds that

7(h; M) ~ N (7 4 h*Bi,,.. (nh) "'V (7)) .

As mentioned above, the variance V(1) is minimized if 7 = ny. However, the distributional
approximation is also valid if 77 # 1y because the moment condition (3.2) holds for all
adjustment functions, and not just the optimal one. In that sense, our procedure is robust
to misspecification or over-regularized estimation of the optimal adjustment function.
Moreover, we argue that V() is typically smaller than V,,,. or V,,, even if 5 # 1.

We also show that other common steps in an empirical RD analysis can easily be
implemented by applying existing methods that are devised for settings without covari-
ates to the generated data set {(X;, M;(7sx)))}icin)- For example, we can construct an
estimator of the bandwidth that minimizes the asymptotic mean squared error of 7(h;7)
by using the procedures proposed by Calonico et al. (2014) or Imbens and Kalyanara-
man (2012). Similarly, we can generalize the standard error (2.5) and construct a valid

nearest-neighbor standard error se(h;7n) as

(0s) = S whPF@, 37) = g (M) — 1 X M) s (39
i=1 JER;

and construct “robust bias correction” and “bias-aware” confidence intervals as in Calonico

et al. (2014) and Armstrong and Kolesar (2020), respectively. To reduce the sensitivity

of empirical findings to the particular data split in the cross-fitting step, we can proceed

as in Chernozhukov et al. (2018, Section 3.4) by repeating the respective procedure sev-

eral times and reporting a summary measure of the results, such as the median. We

recommend proceeding like this especially when working with smaller sample sizes.

3.3. Estimating the Adjustment Function. We now discuss some implementation
details for the first-stage estimator of the optimal adjustment function 7y. Our theoretical
analysis allows for a variety of different methods to be used in this context. If one wishes
to maintain the simplicity of the conventional linear adjustment, one can obtain a “cross-

fitted” version of 7,,(h) by setting 75(2) = 2,4, for s € {1,..., S}, where 7, is the

11



minimizer w.r.t. 7 in the minimization problem

I/IBHVHZ Kn(X)(Yi = S 8- 7 7). (3.6)
Toers

We refer to this procedure as the cross-fitted “localized” linear adjustment. The adjust-
ment coefficients, however, do not need to be estimated using the kernel weights from
the second-stage regression. As an important variant of cross-fitted linear adjustments,
we consider 7s(2) = 27, 00, Where 7, o, is obtained via a version of (3.6) without kernel
weights. Since all the observations outside of fold s are used to obtain 7, o, we refer to
this procedure as the cross-fitted “global” linear adjustment. In finite samples, the global
version can outperform the localized one in terms of the resulting standard deviation of
the RD estimator due to the increased stability of the first-stage estimates. This approach
can be naturally extended to other parametric models where the components involving
S; and Z; are additively separable, and it can be combined with lasso regularization. The
cross-fitted post-lasso adjustments are then obtained via (3.6) with the set of covariates
restricted to those “selected” by the lasso.

More generally, our approach allows for any parametric, classical nonparametric as
well as generic modern machine learning methods. To allow for such generality, we
consider adjustment functions of the form

A(:) = 3@ ) + ), s € L8},

where 717 (z) and fi; (2) are separate estimators of yug(2) = E[Y;|X; = 07, Z; = 2| and
to (2) = E[Y;|X; = 07,7, = z], respectively, using the data outside of fold s. With
appropriate subject knowledge, one can then, for example, specify parametric models for
E[Y;|X; = z, Z; = z]. If the number of covariates is small, the functions pg and p; can
be also estimated using classical nonparametric methods under smoothness conditions,
with local polynomial regression being particularly suitable due to its good boundary
properties. If the number of covariates is large, however, we recommend using modern
machine learning methods, such as lasso or post-lasso regression, random forests, deep
neural networks, boosting, or ensemble combinations thereof.

One issue to consider is that the default implementations of generic machine learning
estimators of E[Y;|X; = z,Z; = z] will not automatically produce an estimate with a
jump at the cutoff. As having this feature is potentially important in our context, we

consider two simple variations of generic machine learning estimators. First, let

BV T, = t, X; = 2, Z; = 2] = argmin > U(Y;, f(T1, X;, Z:)) (3.7)

FEF ere

12



be a generic machine learning estimator of E[Y;|T; = ¢, X; = z,Z; = z|, computed by
minimizing some empirical loss function L(f) = > ,c;c U(Y:, f(Ti, Xi, Z;)) over a set of
candidate functions F. We can then estimate pu*(z) by IES[Y;\TZ- =1,X;, =02 = Z
and p~(z) by IES[Yi|Ti = 0,X; = 0,7; = z]. Here including the seemingly superfluous
treatment indicator 7; = 1{X; > 0} as a predictor allows the machine learner to cre-
ate the “jump” in the estimated function at the cutoff value. We refer to this type of
implementation as “global”, as it uses all available observations.

To define the second type of implementation of machine learning we consider in this
paper, let

E[Yi|T, =t,Z; = 2] = argmin Y K(X,;/b)U(Y;, (T}, Z;)) (3.8)
fer

iel¢

be a generic machine learning estimator of E[Y;|T; = ¢,Z; = z|, where b > 0 is some
positive bandwidth and K is again a kernel function. We can then estimate pu*(z) as
E VT, = 1,Z; = z] and p(2) as BJY;|T; = 0,Z; = 2z]. We refer to this type of
implementation as “localized”, as it effectively only uses data points whose realization of
the running variable is close to the cutoff. The idea is to produce an estimate with small
empirical loss in the relevant area around the cutoff rather than one with small “overall”
loss. The downside of this approach is the reduced effective sample size and the need to

choose the tuning parameter b.”

3.4. Our Proposed Flexible Adjustment. The specific flexible covariate adjustment
that we propose and implement in our empirical analysis and simulations is an ensemble
of the following methods: (i) linear regression; (ii) post-lasso; (iii) boosted trees; and
(iv) random forest. All four methods are implemented in localized and global versions
discussed above. We use the cross-fitted linear and post-lasso adjustments specified in
the discussion following (3.6), and the boosted trees and random forest adjustments are
based on the formulations in (3.7) and (3.8). Our proposed flexible covariate adjustment
is a convex combination of these eight adjustment functions and the trivial no-adjustment
function that minimizes the mean squared error for predicting the outcome close to the

cutoff. Specifically, we employ the super learning approach of Van der Laan et al. (2007),

"The choice of b involves a bias-variance trade-off similar to the one encountered in classical nonpara-
metric kernel regression problems. We are not aware of generic theoretical results for such estimators
in settings with b — 0 as n — oco. Specific results are given by Su et al. (2019) for the lasso, and by
Colangelo and Lee (2022) for series estimators and deep neural networks. In our applications below, we
simply use b = h. To make this simultaneous choice feasible, we use an iterative procedure. We first
choose a reasonable preliminary first-stage bandwidth, like the one that would be optimal for RD estima-
tion without covariates, and generate preliminary versions of the adjustment terms as described above.
Next, we use the preliminary covariate-adjusted outcomes to pick an optimized second-stage bandwidth.
Finally, we rerun both stages with this last bandwidth to obtain our empirical results.
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where the optimal weights are chosen via cross-validation.®

4. MAIN THEORETICAL RESULTS

4.1. Assumptions. We study the theoretical properties of our proposed estimator under a
number of conditions that are either standard in the RD literature, or concern the general
properties of the first-stage estimator 7. To describe them, we denote the support of Z;
by Z, and the support of X; by X. We write X}, = X N [—h,h], and Z;, denotes the
support of Z; given X; € &},. We also define the following class of admissible adjustment

functions:
E={n:En(Z)|X; = x| exists and is twice continuously differentiable around the cutoft}.

The class £ implicitly depends on the underlying conditional distribution of the covariates
given the running variable. If this conditional distribution changes smoothly around the
cutoff, the class £ contains essentially all functions of the covariates, subject only to

technical integrability conditions.?

Assumption 1. For all n € N, there exist a set T,, C € and a function n € T, such that:
(i) ms belongs to T, with probability approaching 1 for all s € [S]; (ii) it holds that:
sup sup E [(n(Z;) — 7(Z:))*|Xi = x] = O(r})

n
NETn xEX,

for some deterministic sequence r, = o(1).

Assumption 1 states that with high probability the first-stage estimator belongs to
some realization set 7, C £. As discussed above, this requirement seems weak as we
generally expect the class £ to be very large. The assumption also states that the sets
T, contract around a deterministic sequence of functions in a particular Lo-type sense.
Note that taking the supremum in Assumption 1 over A}, instead of X suffices as the

properties of the first-stage estimator are only relevant for observations with non-zero

8We implemented our procedure in the R programming language. The boosted trees adjustments
are obtained using the package xgboost with trees of depth 2 and shrinkage rate 0.1. The number
of boosting iterations is chosen via cross-validation with a maximum of 1000 iterations, separately for
the localized and global versions. The random forest with 1000 trees is implemented using the package
ranger with the minimal node size set to the maximum of 10 and 0.1% of the sample size. All other
parameters are set to the default values in the respective packages. For post-lasso estimation, we use
the function rlasso from the package hdm with a data-driven penalty parameter. We use the package
SuperLearner to choose the optimal weights via cross-validation.

9For example, if the conditional distribution of Z; given X; admits a density Jzx(z|z) that is twice
continuously differentiable in z and |87 fz|x (z]x)| < g;(z) for all z in a neighborhood of the cutoff, some
integrable functions g;, and j € {0, 1,2}, then £ contains all bounded Borel functions. The class £ also
contains all polynomials if the corresponding conditional moments of Z; exist and are twice continuously
differentiable.
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kernel weights in the second-stage local linear regression. The assumption does not impose
any restrictions on the speed at which 77 concentrates around 7. It also allows the function
7 to be different from the target function 7y, so that 7 could be inconsistent for 7.
Mean-square error consistency as in Assumption 1 follows under classical conditions
for the parametric and nonparametric procedures for settings in which the number of
covariates is fixed. For the “localized” versions of the machine learning methods described
in Section 3.3, existing results imply that for fixed b > 0 and K the uniform kernel,
sup E [(n(2) ~ 1(Z)*1X. € (-b.5)] = O(2) (4.1)
with 7(z) = (E[Y;|X; € (=b,0), Z; = 2] + E[Y;| X; € (0,b), Z; = z])/2 and some r,, = o(1),
under general conditions. For example, if 7j(z) is contained in a Holder class of order s,
then (4.1) can hold with r2 = n=2%/(2s+d) for estimators that exploit smoothness. If (%)
is s-sparse, then (4.1) can hold with r2 = slog(d)/n for estimators that exploit sparsity.
Assumption 1 then follows from (4.1) if the conditional distribution of the covariates
does not change “too quickly” when moving away from the cutoff. For example, if the

covariates are continuously distributed conditional on the running variable, having that

fz1x(z]z)
sup sup ———
TEX) 2€2), fZ\XE(—b,b)(z)

< C,

for some constant C' and all n sufficiently large, suffices. Similar conditions can be given
for discrete conditional covariate distributions, or intermediate cases. f E[Y;|X; =z, Z; =
z] is sufficiently smooth in z on both sides of the cutoff, we can also expect that 7 is “close”
to no for “small” values of b. Formal rate results with b — 0 are given by Su et al. (2019)

for the Lasso, and by Colangelo and Lee (2022) for series and deep neural networks.

Assumption 2. For j € {1,2}, it holds that:

sup sup |IE [n(Z;) — 7(Z:)|X; = z]| = O(vj ).
€T 2 X\ {0}

for some deterministic sequences v;,, = o(1).

Assumption 2 also concerns the first-stage estimator, and requires the first and second
derivatives of E [n(Z;) — 7(Z;)| X; = x| to be close to zero in large samples for all n €
T.. We generally expect this condition to hold with vy, = vy, = 7, with r, as in

Assumption 1.%°

10For example, this can easily be seen to be the case if 7 converges to 7 uniformly over Z with rate
rn and the smoothness conditions for fz x(z|x) given in footnote 9 hold. Similarly, under regularity
conditions on E[Z;|X; = z], these three rates coincide if 7, contains only linear functions. Without any
additional restrictions on first-stage estimators or 7,, except that it contains only bounded functions,
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Assumption 3. X; is continuously distributed with density fx, which is continuous and

bounded away from zero over an open neighborhood of the cutoff.

Assumption 3 is a standard condition from the RD literature. Continuity of the
running variable’s density fx around the cutoff is strictly speaking not required for an
RD analysis. However, a discontinuity in fy is typically considered to be an indication of
a design failure that prevents 7 from being interpreted as a causal parameter (McCrary,
2008; Gerard et al., 2020). For this reason, we focus on the case of a continuous running

variable density in this paper.

Assumption 4. (i) The kernel function K is a bounded and symmetric density function
that is continuous on its support, and equal to zero outside some compact set, say [—1,1];
(ii) The bandwidth satisfies h — 0 and nh — oo as n — oo.

The conditions on the kernel and the bandwidth that are imposed in Assumption 4

are standard in the RD literature.

Assumption 5. There exist constants C' and L such that the following conditions hold
for all n € N. (1) E[M;(7)|X; = z] is twice continuously differentiable on X \ {0} with
L-Lipschitz continuous second derivative bounded by C'; (ii) For all x € X and some q > 2
E[(M;(n) — E[M;(n)|X:])?| X; = z| exists and is bounded by C; (iii) V[M;(7)|X; = x| is
L-Lipschitz continuous and bounded from below by 1/C for all x € X\ {0}.

Assumption 5 collects standard conditions for an RD analysis with M;(7) as the out-
come variable. Part (i) imposes smoothness conditions on E[M;(7)|X; = x|, and parts (ii)
and (iii) impose restrictions on conditional moments of the outcome variable. Through-
out, we use constants C' and L independent of the sample size to ensure asymptotic
normality of the infeasible estimator 7(h;7) even in settings where the distribution of the

data, and thus 7, might change with n.

4.2. Asymptotic Properties. We give four main results in this subsection. The first
shows that our proposed estimator 7(h;7) is asymptotically equivalent to an infeasible
analog 7(h;7) that replaces the estimator 7 with the deterministic sequence 7; the second
shows the asymptotic normality of the estimator; the third characterizes how the asymp-
totic variance changes with the adjustment function and shows that 7, is indeed the
optimal adjustment; and the fourth shows the impact of flexible covariate adjustments

on the optimal bandwidth and the corresponding mean squared error.

Assumption 2 also follows from Assumption 1, again with vy , = v, = 75, under restrictions concerning
solely the conditional density fz|x (z|x). Specifically, it suffices that IE[(8g;fz|x(Zi|:z:)/fZ|X(Z¢\x))2\Xi =
] is bounded for j € {1,2} uniformly in = and the conditions from footnote 9 hold.
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Theorem 1. Suppose that Assumptions 1—4 hold. Then
7(h; ) = 7(h; ) + Op (1 (nh) ™2 - w10k (nh) Y2 + v2,0%).

Theorem 1 is easiest to interpret in what is arguably the standard case that v, =
Vg, = Ty, in which it holds that

7(hi7) = 7(h;0) + Op(ra(h® + (nh) %)) = 7(h; ) + Op(ra|7(h; 7)) — 71).

The accuracy of the approximation that 7(h; 7)) & T(h; ) thus increases with the rate at
which 7 concentrates around 7, but first-order asymptotic equivalence holds even if the
first-stage estimator converges arbitrarily slowly. This insensitivity of 7(h;7) to sampling

variation in 7 occurs because 7(h;17) is based on the moment condition
7 = E[M;(n)|X; = 07] — E[M;(n)|X; = 07,

which is insensitive to variation in 7. Moment conditions with a local form of insensitivity
with respect to a nuisance function, often called Neyman orthogonality, are used exten-
sively in the recent literature on two-stage estimators that use machine learning in the
first stage (e.g. Belloni et al., 2017; Chernozhukov et al., 2018). The global insensitivity
that arises in our RD setup is stronger, and allows us to work with weaker conditions on
the first-stage estimates than those used in papers that work with Neyman orthogonal-
ity. Similarly, globally insensitive moment function exists, for example, in certain types
of randomized experiments, and our proposed estimator is in many ways analogous to

efficient estimators in such setups; see Section 5.2 for further discussion.

Theorem 2. Suppose that Assumptions 1-5 hold. Then
Vh V(i)™ (7(h;7) — 7 — B2B,) 3 N(0,1),

for some B,, = Byyse +0p(1), where Byuse and V (+) are as defined in Sections 2.2 and 3.1,

respectively.

Theorem 2 follows from Theorem 1 under the additional regularity conditions of As-
sumption 5. It shows that our estimator is asymptotically normal, gives explicit expres-
sions for its asymptotic bias and variance, and justifies the distributional approximation

given in Section 3.2.

Theorem 3. Suppose E[Y?|X; = x| is uniformly bounded in x, the limit V[Y;—us(Z;)| X; =
0*] exists for x € {+,—}, and ny € V, where the function class V is defined as

V={n:Vn(Z)|X = z| and Covin(Z;), u5(Z;)|X; = x| are continuous for x € {+,—}}.
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Then, for any n®, n® €V,
K
fx(0)

Theorem 3 introduces a function class V' that, similarly to the class £ above, enforces

V(@) —v(n®) =2 (Vno(Z:) — nN(Z)|X; = 0] = Vno(Zi) = n®(Z:)| Xi = 0]) -

some technical integrability conditions. The theorem shows that V(@) < V(n®) for
generic adjustment functions n® and n® if and only if Vi (Z;) — 7' (Z;)|X; = 0] <
V[no(Z;)—n®(Z;)| X; = 0]. That is, the “closer” (in a particular Ly-sense) the adjustment
function is to the optimal one, the smaller the asymptotic variance. In consequence, the
lowest possible value of V' (7) is achieved for 77 = ny. Even if 7 # 1y, our flexible covariate
adjustment RD estimators typically still have smaller asymptotic variances than the no
covariates and linear adjustment RD estimators. Specifically, V(7) < Vjuse if and only
it V[no(Z;) — 7(Z:)|X; = 0] < V[no(Z;)|X; = 0], i.e. whenever 7j(Z;) captures some
of the variance of 7y(Z;) among units near the cutoff; and V(1) < Vj;, if and only if
Vino(Z:) — 7(Z:)|X; = 0] < Vno(Z:) — Zv0|X; = 0], i.e. whenever 7 is “closer” to 1 in

our particular Ls-sense than the population linear adjustment function.

Theorem 4. Let AMSE(h,n) = h*B2 __ + (nh)™'V(n) be the approzimate mean squared

error of 7(h;n), and hass(n) = argmin, AMSE(h, ) = n=Y/3 (V (1) /AB2_)"° the corre-

base

sponding optimal bandwidth. Then for any pair of adjustment functions n‘® n® eV,

hassss (@) _ (v AMSE(hass(n®),n®) (v @)\
hAMSE(n“’)) U(U(b)) AMSE (hanrse (77(1)))7 U(b)) v(n(”)) ’

where v(n) = V[M;(n)|Xi = 07] + V[M;(n)|X; = 07].

Theorem 4 implies that flexible covariate adjustments can reduce the approximate
mean squared error of our estimator not only directly through a smaller asymptotic
variance term but also indirectly through a change in the optimal bandwidth and a corre-
sponding reduction in bias. That is, if V(@) < V(n®) for generic adjustment functions
7@ and n® | then the optimal bandwidth h,,sz(n'@) is smaller than h,,sx(n®), and
the corresponding estimator 7(huysz(7¥);7®) has both smaller asymptotic bias and

smaller asymptotic variance than 7(hyss(n®); n®).

5. ADDITIONAL THEORETICAL RESULTS AND DISCUSSIONS

5.1. Bandwidth Choice and Inference. We formally show in Appendix B that stan-
dard methods for bandwidth choice and confidence interval construction based on the
no covariates RD estimator maintain their general asymptotic properties when they are
applied to the generated data set {(X;, M;(1s)))}icp) without any adjustment for the

sampling uncertainty about the estimated adjustment function. Specifically, we derive
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three groups of results, all under conditions that are rather weak and analogous to those
commonly imposed in setups without covariates.

First, we show that the nearest neighbor standard error (3.5) is consistent, in the
sense that

nhse* (h;1)/V (77) = 1.

Second, we show that commonly used methods for confidence interval construction achieve
correct asymptotic coverage. For example, assuming a bound on |0*E[M;(7)|X; = z]|,
the absolute value of the second derivative of the conditional expectation of the adjusted
outcome given the running variable, one can construct a “bias-aware” confidence interval

as in Armstrong and Kolesar (2020) as
CIy, = [T(hin) £ za(b(R) /5e(h; 7)) se(h; )] -

Here z,(r) is the (1 — a)-quantile of |N(r, 1), the folded normal distribution with mean
r and variance one, and b(h) is an explicit bound on the finite-sample bias of 7(h,7)
given in the appendix. Alternatively, one can also construct a “robust bias correction”
confidence interval as in Calonico et al. (2014) by subtracting a local quadratic estimate
of the first-order bias of 7(h;7) from the estimator, and adjusting the standard error

appropriately. This yields a confidence interval of the form
CI™, = [ (h; ) £ 288" (h; )],

where z, = 2,(0) and the other terms are formally defined in the appendix. Third, we
show that the MSE-optimal bandwidth selector %, of Calonico et al. (2014), which is
similar to that of Imbens and Kalyanaraman (2012), consistently estimates the AMSE-
optimal bandwidth A ,,55(7) defined in Theorem 4, in the sense that

R/ Boangsis(77) > 1.

RD estimation and inference with flexible covariate adjustments are thus easy to imple-

ment with existing software packages.

5.2. Analogies with Randomized Experiments. The results in Section 4 are quali-
tatively similar to ones obtained for efficient influence function (EIF) estimators of the
population average treatment effect (PATE) in randomized experiments with known and
constant propensity scores (e.g., Wager et al., 2016; Chernozhukov et al., 2018). To see
this, consider a randomized experiment with unconfounded treatment assignment and

known constant propensity score p. Using our notation in an analogous fashion, the EIF
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of the PATE in such a setup is typically written in the form

0 1y _ .1 0 LY —my(Z:) (1 =T)(Yi —my(Z:))
Vi(mg, mg) = my(Z;) —mg(Z;) + D N 1—p ’

where m}(z) = E[Y;|Z; = 2,T; = t] for t € {0,1} (e.g., Hahn, 1998). The minimum
variance any regular estimator of the PATE can achieve is thus Vg = V(t0;(mQ, m{)).
By randomization, it also holds that Tpyrs = E[1);(m° m!)] for all (suitably integrable)
functions m® and m!. The PATE is thus identified by a moment function that satisfies a
global invariance property. A sample analog estimator of 7, based on this moment func-
tion has asymptotic variance Vi if m' is a consistent estimator of mf, for ¢ € {0, 1}, but
remains consistent and asymptotically normal with asymptotic variance V(i;(m°, m?)) if
m' is consistent for some other function m!, t € {0,1}. The convergence of m' to m' can
be arbitrarily slow for these results (e.g. Wager et al., 2016; Chernozhukov et al., 2018).

The qualitative parallels between these findings and ours in Section 4 arise because our
covariate-adjusted RD estimator is in many ways a direct analog of such EIF estimators.
To show this, write m(z) = (1 — p)m*(z) + pm°(z) for any two functions m® and m?,
so that mg(z) = (1 — p)m{(z) + pmJ(z). The PATE’s influence function can then be
expressed as

Li(Yi —mo(Z) (1= T)(Yi — mo(Z:))

1/12' m07m1 - - )
(. m) ) Lo

and it holds that
Eli(m®,m")] = E[Y; — m(Z;)|T; = 1] — E[Y; — m(Z)|T; = 0],

which is the difference in average covariate-adjusted outcomes between treated and un-
treated units. This last equation is fully analogous to our equation (3.2), with p = 1/2,
and conditioning on T; = 1 and T; = 0 replaced by conditioning on X; in infinitesimal
right and left neighborhoods of the cutoff (the value p = 1/2 is appropriate here because
continuity of the running variable’s density implies that an equal share of units close to
the cutoff can be found on either side). An EIF estimator of 7p,rp is thus analogous to
our estimator 7(h;7), as they are both sample analogs of a moment function with the

same basic properties.!!

1'We note that neither in our setting nor with EIF estimation of the PATE would replacing the known
propensity score with some empirical estimate result in any efficiency gains. The finding from Hahn
(1998) that using an estimated propensity score can be more efficient than using the true one refers to
inverse probability weighting (IPW) type estimators and does not apply to the EIF type estimators we
consider here.
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5.3. Fuzzy RD Designs. In fuzzy RD designs, units are assigned to treatment if their
realization of the running variable falls above the threshold value, but might not comply
with their assignment. The conditional treatment probability given the running variable
hence changes discontinuously at the cutoff, but in contrast to sharp RD designs it does

not jump from zero to one. The parameter of interest in fuzzy RD designs is

o v _ E[Yi|X; = 0%] - E[Yi|X; = 0]
- E[GX =04 - E[L|X; =07)

which is the ratio of two sharp RD estimands (throughout this subsection, the notation
is analogous to that used before, with the subscripts Y and T referencing the respective
outcome variable). Under standard conditions (Hahn et al., 2001; Dong, 2018), one can
interpret 6 as the average causal effect of the treatment among units at the cutoff whose
treatment decision is affected by whether their value of the running variable is above or
below the cutoff.

Similarly to sharp RD designs, predetermined covariates can be used in fuzzy RD
designs to improve efficiency. Building on our proposed method, we consider estimating

0 by the ratio of two generic flexible covariate-adjusted sharp RD estimators:

B(h: By ir) = v (hiiy) Yo wi(h)(Yi = Ny.e()(Zs))
T To(hiir) i wi(R) (T — Nrsy (Zi))

Proposition 1. Suppose that Assumptions 1-5 hold also with T; replacing Y;, mutatis

mutandis.

(i) It holds that

Vi Vol i)™ (0007, ) = 0 = BolGiy, ir)h?) < N (0,1),

where

Bo(iy, ir) = % (OPELY; — 0T)|X, = ]|, _,. — PE[Y; — 0T3|X, = a]|__,_) + op(1),
_ K _ _ _

Vo(Ty. 1) = 0] (VU (v, )| Xi = 0F] + VUi iy, 7r) | X; = 07])

and Uiy, r) = (Ys — 0T; — (v (Z:) — 0070 (Zs))) [ 77

(ii) Suppose additionally that the assumptions of Theorem 3 hold, mutatis mutandis,
also with T; replacing Y; and the definition of V adjusted accordingly. Then, for any
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0\ k) n eV it holds that

a a b
Vo, ns) = V() )

= % <V[7]Y,0(Zz‘) - HUT,O(Zi) - (77@(2) 977((1)( Z;))| Xi = 0]

~Vinvo(Zs) = Onro(Z0) — (0 (Z:) — 00 (2))|X: = 0])

The first part of the proposition shows that our flexible covariate-adjusted fuzzy RD
estimator is asymptotically normal, with asymptotic variance that depends on the pop-
ulation counterparts 7y and nr of the two estimated adjustment functions. This result
can then be used to construct a confidence interval for 6 based on the t-statistic. Alter-
natively, confidence sets for 6 can be constructed via an Anderson-Rubin-type approach,
which circumvents certain problems of ratio estimators (Noack and Rothe, 2024).

The second part of the proposition shows that the asymptotic variance of our estimator
is minimized if the estimated adjustment functions concentrate around 7y = 7y, and
fir = nr,0, respectively. That is, the optimal adjustment functions for fuzzy RD designs
can be obtained by separately considering two covariate-adjusted sharp RD problems with
outcomes Y; and Tj;, respectively. This holds because for fixed adjustment functions 7y
and nr we have that g(h; Ny, nr)—0 is first-order asymptotically equivalent to a sharp RD
estimator with the infeasible outcome U;(ny,nr) = (Y; — 0T, — (ny(Z;) — Onr(Z;))) /o
By our Theorem 3, the asymptotic variance of 8(h;ny,nr) is minimized if (ny(Z;) —
Onr(Z;))/mr equals the optimal adjustment function for the outcome (Y; — 0T;) /7. By

linearity of conditional expectations, this holds if 7y = 7y,o and 1y = nrp.

5.4. Variants of Cross-Fitting. We note that instead of the type of cross-fitting de-
scribed in Section 3.2, which is analogous to the DML2 method in Chernozhukov et al.
(2018), one could also consider an analog of their DML1 method, which creates an overall
estimate by averaging separate estimates from each data fold. In our context, this would

yield an estimator of the form

7—alt(h 77 Z szs

SE[S] ’LEIS

where w; s(h) is the local linear regression weight of unit ¢ using only data from the s-th

fold; see Appendix A.1. Under the conditions of Theorem 1, we see from its proof that
Tat(h: D) — 7(h; ) = Op(rn(nh) ™2 + vy nh?). (5.1)

The estimators 7(h; 7)) and T, (h;7) thus have the same first-order asymptotic distribu-

tion. However, comparing the rate in (5.1) to that in Theorem 1 shows that the alternative
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implementation removes a term of order Op(vy ,h(nh)~'/?). We still prefer our proposed
implementation of cross-fitting despite this improvement in second-order asymptotic prop-
erties because it allows existing routines for bandwidth selection and confidence interval
construction to be applied directly to the generated data set {(Xi, M;(7s)))}icin], as

discussed in Section 5.1.12

6. PRACTICAL PERFORMANCE

To illustrate the scope for efficiency improvements that flexible covariate adjustments can
achieve in practically relevant settings, we applied our method to a number of recent RD
studies. Specifically, we collected data from all articles that appeared between 2018 and
2023 in the main AEA journals for applied microeconomic research, fit into our general
framework, use covariates, and have directly available public replication data. We found
16 such papers with a total of 56 main specifications. For each of these specifications,
we computed the length of bias-aware 95% confidence intervals for the respective RD
parameter based on local linear estimators that use our flexible covariate adjustments,
linear adjustments, and no covariate adjustments, respectively.!® For illustration pur-
poses, we use the same “no covariates” smoothness bound for all estimators within each
specification.!* This analysis captures the effect of covariate adjustments on the confi-
dence interval length that is due to a reduction in variance, abstracting from other issues.
In Section S1 of the Online Supplement we also provide results where the smoothness
bound is calibrated based on the adjusted outcomes as well as results based on the robust
bias correction. Appendix C contains further details on the implementation and the data
collection process, and Table 51 in the Online Supplement provides the complete list of
papers and specifications used.

Figure 1 shows the distribution of the ratio of confidence interval lengths for flexible
adjustments relative to no adjustments in its left panel, and for flexible adjustments
relative to linear adjustments in its right panel. We first note that the confidence intervals
with flexible adjustments are never noticeably wider than the ones of the no covariates
or linear adjustment RD estimators. From the left panel, we can see that in nearly half

of our specifications the flexible covariate adjustments yield confidence intervals that are

12Velez (2024) also argues in the context of a setting with regular parameters DML2 should be preferred
DMLI1 due to better bias and mean-squared error properties under particular asymptotic regimes.

13We implement the linear adjustment using cross-fitting to ensure a fair benchmark for our flexible
adjustment. In Section 7, we illustrate in simulations that the standard error based on the conventional
linear adjustment may be downward-biased in settings where the number of covariates is large relative
to the effective sample size.

HGpecifically, we use the rule of thumb for the smoothness bound of Imbens and Wager (2019), which
equals twice the maximal second derivative of a second-order global polynomial fitted on each side of
the cutoff. The smoothness bound is calibrated based on the original outcomes. The results in the main
text are not very sensitive to specific choices of the smoothness bounds.
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Figure 1: Bias-aware confidence interval (CI) lengths with flexible covariate adjustment relative
to bias-aware confidence interval length with no covariates and with cross-fitted localized linear
adjustment for all specifications of the empirical literature survey. The smoothness constants
are calibrated via the rule of thumb of Imbens and Wager (2019) using the original outcomes.

not noticeably shorter than the ones obtained without covariate adjustments. Given the
flexibility of our methods, this suggests that the covariates are not informative about
the outcome in these specifications, and hence, there is no scope for efficiency gains. In
many specifications, however, flexible covariate adjustments lead to substantially shorter
confidence intervals, with the biggest reduction being exceeding 30%. To put this into
perspective, note that one would have to increase the sample size used by the no covariates
RD estimator by a factor of about 2.4 to achieve a similar reduction in the length of the
confidence interval. From the right panel of Figure 1, we can see that linear adjustments
are in general unable to exhaust all the available covariate information. Indeed, the
confidence intervals based on flexible adjustments can be substantially shorter, with the

biggest reduction reaching 20% in our empirical exercise.

7. SIMULATIONS

In this section, we investigate the finite-sample properties of our proposed flexible covari-
ate adjustment RD estimators under realistic conditions in two simulation studies. The
first study’s purpose is to show that our theoretical results provide accurate approxima-
tions to our estimator’s actual finite properties, whereas the second study’s purpose is to
document how the properties of our estimator and that of existing methods are affected

if the number of covariates becomes large relative to the effective sample size.
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7.1. General Setup. Our simulations are based on real data from Londono-Vélez et al.
(2020), who study the impact of merit-based college financial aid for low-income students
in a sharp RD design. Their data contain the outcome variable, a dummy for immediate
enrollment in any post-secondary education, the running variable, a test score,'® and 21
covariates, namely age, family size, indicators for gender, ethnicity, employment status,
parent’s education, household residential stratum, high school schedule, and high school
type. Our simulations involve repeatedly drawing random samples from a version of the
data that is restricted to the n = 259,419 observations with test scores below the original
treatment threshold (so that none of the students remaining in the data set are actually
assigned to treatment), and then estimating the effect of a placebo treatment “received”
by students with test scores above the median test score value. We use either the original
outcome (enrollment in any post-secondary education) or age (one of the original covari-
ates) as the dependent variable. These two dependent variables correspond to settings
in which covariate adjustments achieve almost no and quite substantial efficiency gains,
respectively; see the RD estimates from the entire restricted data in Table 52 in the On-
line Supplement for details. In the main text, we conduct inference using the bias-aware

approach. All simulations are based on 10,000 Monte Carlo draws.

7.2. Simulation I: Moderate number of covariates. In this simulation study, we
evaluate the finite-sample performance of our methods in a typical RD setting with a
moderate number of covariates and a relatively large number of observations. Specifi-
cally, we consider estimation with the original baseline covariates and samples of size
5000, which is around the median of the sample sizes of the empirical applications of our
literature survey. We apply our flexible covariate adjustment discussed in Section 3.4.
Additionally, we consider the deterministic approximations of all the feasible adjustment
methods, which were obtained by running the respective method on the full restricted
dataset. By comparing the feasible adjustments and their respective deterministic ap-
proximation, we can assess the quality of the approximation in our equivalence result of
Theorem 1. For comparison, we also report the results without covariate adjustments
and with conventional linear adjustments. For each adjustment method, we select the
bandwidth and construct a confidence interval using the bias-aware approach with the
smoothness bound calibrated using the adjusted outcomes via the rule of thumb of Im-
bens and Wager (2019) in each Monte Carlow draw.!® The results are based on 5-fold

cross-fitting with one random data split.

15T ondoflo-Vélez et al. (2020) consider two different test scores as running variables. We focus on the
SABER 11 test score in this section as it is available for a larger number of data points.

16The number of effective observations used in the second stage is on average around 3447 for the
original outcome and around 3622 for age as the dependent variable.
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Table 1: Main results for Simulation I with bias-aware inference.

Adjustment Method SE SD Bias RMSE Band- CI Cov CI CI
x100  x100 x100 x100 width in % Length Length
x100 Reduc-
tion in %

Panel A - Original Outcome

No Covariates 2.15 2.17 041 2.21 37.73 96.95 9.41 0
Conventional Linear 2.09 2.13 0.47 2.19 38.71 96.51 9.14 2.86
Localized Linear Feasible 2.10 2.13  0.45 2.18 39.25 96.63 9.18 2.39
Oracle 2.10 2.13  0.48 2.18 39.08 96.67 9.18 2.44
Flexible Feasible 2.11 2.13 044 218 39.03 96.69 9.19 2.28
Oracle 2.09 2.12 0.44  2.16 39.37 96.73 9.14 2.81
Panel B - Age
No Covariates 24.95 25.69 2.87 25.84 42.25 96.84 110.79 0
Conventional Linear 21.55 22.50 2.64 22.66 41.96 96.24 95.90 13.44
Localized Linear Feasible 21.84 2256 2.64 22.72 42.09 96.34 97.05 12.40
Oracle 21.71 2243 2.69 22.59 42.07 96.52 96.53 12.87
Flexible Feasible 21.35 22.10 2.65 22.25  42.25 96.48 94.87 14.37
Oracle 2094 21.82 2.96 22.02 42.75 96.26 93.06 16.00

Notes: Results are based on 10,000 Monte Carlo draws and a sample size of n = 5000 (see Section 7 for details). Data generating
process is based on Londono-Vélez et al. (2020). The bandwidth is chosen and the confidence sets are constructed based on
bias-aware inference. The columns show results for simulated mean standard error (SE); standard deviation (SD); bias (Bias);
root mean squared error (RMSE); the average bandwidth (Bandwidth); coverage of confidence intervals with 95% nominal
level (CI Cov); the average confidence interval length (CI Length); and the mean confidence interval length relative to the no
covariates confidence interval length (CI Length Reduction). Estimators are described in Section 3.

Table 1 reports the main results of this simulation study. Our methods work very well
for both dependent variables and all types of adjustments in that the mean simulated
standard errors are close to the simulated standard deviations and the confidence intervals
have simulated coverage rates close to the nominal one. The confidence intervals are
slightly conservative, which is typical in bias-aware inference. The changes in the mean
bias for different types of adjustments are negligible relative to the standard deviation,
which is consistent with our conjecture that covariate adjustments should typically have
no first-order effect on the leading bias constant.

In Panel A, the covariates have essentially no impact on the dependent variable, and
so none of the methods leads to noticeable reductions in the standard deviation. In
Panel B, where the covariates have some explanatory power for the dependent variable,
the cross-fitted RD estimator with localized linear adjustment yields a confidence interval
that is on average 12% shorter than the no covariates confidence interval. The flexible
adjustment improves this performance even further. As can be expected in a setting with
a small number of covariates relative to the sample size, the conventional and cross-fitted
localized linear covariate adjustments yield similar results.

In Appendix 52 of the Online Supplement, we present additional simulation results
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for all individual adjustment methods described in Section 3.4. We further investigate
the asymptotic equivalence result presented in Theorem 1 within this simulation design
and we illustrate that the estimation uncertainty of the adjustment functions is indeed
asymptotically negligible relative to the overall estimation uncertainty of the RD esti-
mators. Additionally, we present estimation and inference results based on robust bias

corrections. The qualitative conclusions remain very similar to those presented above.

7.3. Simulation II: Many covariates. This simulation setting is motivated by the
fact that in some empirical applications of our literature survey, researchers estimated
specifications where the ratio of the effective sample size to the number of covariates is
relatively small. Indeed, in Table S1, the minimal value of this ratio is 2.7 and it falls
below 20 in about one fifth of the specifications.

To mimic settings where there are many covariates relative to the effective sample size,
we sample 500 observations without replacement within a distance of 25 from the placebo
cutoff and use all of them in the RD regressions, i.e. we use a fixed bandwidth h = 25.
We create additional covariates by generating all second-order interaction terms of the
original covariates, and we consider different settings by including the first 2, 10, 50, 100,
and 150 of these covariates.!” In this setting, the ratio of the effective sample size to the
number of covariates lies in the range between 250 and 3.33, which corresponds to the
settings in our literature analysis with small values of this ratio. For each subsample, we
estimate the RD parameter using the no covariates, the conventional linear adjustment,
and our cross-fitted RD estimator with localized linear adjustments and localized random
forest adjustments.'® In this simulation, we calibrated the smoothness constant for each
estimator and number of covariates using the full sample and we kept them fixed across
simulation draws. The results are based on the bias-aware inference approach and B = 11

data splits for each Monte Carlo draw.'?

7.3.1. Results on efficiency. Figure 2 shows the bias and the standard deviation of the four
estimation methods, normalized by the standard deviation of the no covariates RD esti-
mator, for a varying number of covariates. We note that the simulated bias is insensitive

to including many covariates, and we therefore focus on the standard deviation. In this

I"The first 21 of the technical covariates correspond to the original covariates, followed by the inter-
action terms. Since the covariates have essentially no explanatory power for the original outcome, the
exact order of inclusion does not affect the results in this section.

18We chose the random forest to represent the machine learning adjustments here, but the qualitative
results are similar when employing other methods. In this section, we focus on the individual adjustment
methods, rather than on the flexible ensemble, to offer more direct insights into the mechanics of the
linear and regularized adjustments.

Tn Simulation II, we calibrated the smoothness bound for each method and number of covariates
only once, using the rule of thumb of Imbens and Wager (2019) and oracle adjusted outcomes based on
the full restricted sample described in Section 7.2.
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Figure 2: Results for Simulation II - Bias and standard deviation of the respective estimator
relative to the standard deviation of the no covariates RD estimator in the left and right panel,
respectively. The results are based on samples of size n = 500 within the estimation window
with h = 25 and 10,000 Monte Carlo draws.

setting, the covariates seem to have essentially no explanatory power for the dependent
variable, and so adjustments based on them cannot lead to a reduction in the asymptotic
variance of the RD estimator; see estimation results in Table S2. As predicted by our
theory, when the number of covariates remains moderate, all estimators perform very
similarly, meaning that all the adjustments concentrate around the optimal function of
no adjustment. However, as the number of covariates increases, the standard deviations
of both the conventional and cross-fitted localized linear adjustment estimators become
substantially larger than that of the no covariates RD estimator. The reason for that is
that the linear regression with a large number of covariates is very variable, such that the

t20 and the high-dimensional linear

estimated adjustments are no longer close to a constan
adjustments effectively add non-negligible noise to the outcome variable in this setting.
In contrast, the RD estimator with random forest adjustments, due to built-in regu-
larization, does not become more variable as the number of covariates increases, meaning
that the estimated adjustment function remains close to the optimal function of no ad-
justment. In general, it is therefore advisable to always rely on regularized adjustments

in high-dimensional settings.

7.3.2. Results on inference. We now turn to the standard error and coverage of the

confidence intervals for the respective methods. The left panel of Figure 3 shows that

20Such finite-sample behavior renders our asymptotic theory as well as the results of Calonico et al.
(2019) inapplicable in this setting.
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Figure 3: Results for Simulation II - Mean standard error relative to the standard deviation of
the respective estimator and simulated confidence interval coverage for nominal confidence level
95%. We consider bias-aware confidence intervals and nearest neighbor standard errors. The
results are based on samples of size n = 500 within the estimation window with A = 25 and
10,000 Monte Carlo draws.

the standard error of the conventional linear adjustment estimator exhibits a downward
bias that increases substantially with the number of covariates, with its ratio to the
estimator’s standard deviation reaching less than 70% for 150 covariates. This effect is
due to overfitting: with many covariates, the regression residuals that enter the standard
error formula become “too close to zero”, and standard errors therefore become “too
small”. With cross-fitting, this issue occurs neither for the linear adjustment nor for the
random forest adjustment.

The right panel of Figure 3 shows that, due to increasingly biased standard errors,
the coverage of the conventional linear adjustment bias-aware confidence intervals with
nominal level 95% falls below 85% for 150 covariates. With cross-fitting, bias-aware
confidence intervals have close to nominal coverage for both adjustment methods and
all numbers of covariates under consideration. These simulation results demonstrate that
cross-fitting yields consistent standard errors and valid inference even in high-dimensional

settings where conventional methods may fail.

8. CONCLUSIONS

We have proposed a novel class of estimators that can make use of covariate information
more efficiently than the conventional linear adjustment estimators that are currently
used widely in practice. In particular, our approach allows the use of modern machine

learning tools to adjust for covariates, and is at the same time largely unaffected by the
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“curse of dimensionality”. Our estimator is also easy to implement in practice, and can be
combined in a straightforward manner with existing methods for bandwidth choice and
the construction of confidence intervals. In our reanalysis of the literature, we show that
our proposed estimator yields shorter confidence intervals in almost all empirical appli-
cations, and in some cases, these reductions can be substantial. We therefore expect our

proposed estimator to be very attractive for a wide range of future economic applications.

A. PROOFS OF THE MAIN RESULTS

In this section, we prove Theorems 1-4 and Proposition 1. To this end, we show a more
general result that allows for a local polynomial regression of an arbitrary order p. We use
this result also in Appendix B to establish the validity of the inference methods discussed

in Section 5.1.

A.1. Additional Notation. Let X, = (X;);c[, denote the realizations of the running
variable. For 0 < v < p, we define feasible and infeasible estimators of the jump in the
v-th derivative of the conditional expectation of the modified outcome M (7)) at the cutoff

using the p-th order local polynomial regression as

Tvp h 7] szv,p 5(7,)) and Tvp h T/ szvp )
w’iﬂ),p(h) = w;rv,p(h> - w;v,p(h)7

—1
wl, ,(h (ZKh )X, XT> Kj(X)X,; forxe{+ -},

where )?p,i = (1,X;,... X)), Kyp(v) = K(v/h)/h, K} (v) = Ky(v)1{v > 0}, K, (v) =
K,(v)1{v < 0}. The corresponding estimates of 8%(7) = OYE[M;(7)|X; = x]|s=0+ are

given by

n

wap i(Ms(s)) and ﬁ wap M;(7) for x € {+,—}.
=1

A.2. General Result. We state and prove two theorems that generalize our Theorems 1
and 2.

Theorem A.l. Suppose that Assumptions 1-4 hold with j € {1,....,p + 1} in Assump-
tion 2. Then:

Top(h; 1) = 7o, (h; 1) + Op(t,),
where t, = 1y (nh) ™2+ 370 05 0hI (nh) T2 4+ vy 40, P
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In the proof of Theorem A.1, we will use the following lemma that collects some
standard intermediate steps in the analysis of local polynomial estimators, taking into

account, cross-fitting.

Lemma A.1. Suppose that Assumptions 3 and 4 hold. For s € [S] and x € {—,+}, it
holds that:

(i) —ZK* )(Xi/h)! = E[K(X,)(Xi/h)] + Op((nh)~'/?) for j € N,
’Lels

(”) sz Op ]‘/S + O ((nh)_1/2)7

icls
(iii) Y who,(W)X] = Op(h (nh)™'?) for 1 < j <p,

iEIs
(1) Y [wio, () X]| = Op(h) for j €N,

icl,
(0) Y wiop(h)* = Op((nh)™).

iels
Proof. The results follow from standard kernel calculations. O]

Proof of Theorem A.1. To begin with, note that

Top (i) = Top(hi7) = Y Golp),  Gsp) = > win,n(h)([@:(Z) — 1(Z:)).

Since S is a fixed number, it suffices to show that G4(p) = O,(t,) for s € {1,...,S}. We
analyze the expectation and variance of G5(p) conditional on X,, and (W;);ere. We begin

with the expectation. It holds with probability approaching one that

= ‘Zw1707p(h)E[ﬁs<Z) ( )’Xﬂ( )]GF]

1€ls

|E[G(p)[Xa, (W))jere]

< sup
n€Tn

> wiop(WEM(Z) — 0(Z:)|X.)|.

i€ls

Let m(z;n) = E[n(Z;) — 1(Z;)|X; = z]. Taylor’s theorem yields

P (T ;) XPH

P
1 . .
m(Xim) =m(0;n) + > =&m(0;n) X! +
~ 7' (p+1)!

for some z;, between 0 and X,;. We analyze the three terms associated with different

terms of Taylor’s expansion separately. We make use of Lemma A.1 in each step.
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First, using the Cauchy-Schwarz inequality, we obtain that

sup [m(05m) Y wio, (k)| = sup |m(0:m)|Oy((nh) /%) = Oy(ra(nh) /).

n€Tn icl. n€Tn

Second, for j € {1,...,p}, we have that

(9% 07] szOp

'LGIG

= sup [m(0;7) |1 Op((nh)~112) = Op(h’ (nh)~?v;,.).

n€Tn

sup
7767;L

Third, we note that

swiﬁmww4m7WW<ZmeW%wW“@MW0MW%m.

1€ 1€l

Next, we consider the conditional variance. It holds with probability approaching one

that

V[Go(0)1%n, Wy)jers] = Y wiop(W)V [1(Z) = 7(Z:)1 %, (Wy)jers]

i€ls

< sup Y wio,(A)E[(1(Z:) — n(Z:)*| X))
n€Tn el

< sup sup E[(1(Z;) = n(Z)*|Xi = a] Yy wigp(h)’
7767;1 CCEXh

i€l

= Op(r, (nh) ™),

where we use Lemma A.1 and Assumption 1 in the last step. The conditional convergence

then implies the unconditional one (see Chernozhukov et al., 2018, Lemma 6.1). Il

Theorem A.2. Suppose that the assumptions of Theorem A.1 hold, Assumption 5 holds,
and E[M;(7)| X; = x| is p+1 times continuously differentiable with L-Lipschitz continuous
p + 1 derivative bounded by C'. Then

Vah V(i)™ (Rop(h; 1) — 7 — WP B,) 5 N(0,1),

where, for some kernel constants v, and k,,

Bypn = (5”1153[ (X = al |, + (=1PETEIM; ()X = a]|,_, ) +op(1),
Vp(ﬁ)zfx—fo)(\’[ i(M)IX; = 07] + V[M;(7)| X; = 07]).
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Proof of Theorem A.2. By the conditional version of Lyapunov’s CLT, we obtain that
seo,p(hi 1) (7o, (h:77) — Ef7o,(h: ) |Xa]) — N(0,1).

where seg ,(h; 7) = >, wi0p(h)*V[M;(77)| X;]. By L-Lipschitz continuity of V[M;(77)| X; =

x] in z, we obtain that

sed ,(h;7]) = szop h)2V[M;(7)|X; = 0] +szop (h)2V[M;(7)|X; = 01] + 0, ((nh) 7).

It then follows from standard kernel calculations that nhsef,(h;7) — V,(7) = op(1) and
E[70,(h; 7)[X,] — 7 = B,h*™ + 0,(hPT!) for some constant B, O

A.3. Proofs of Theorems 1-4. Theorems 1 and 2 follow directly from the general results
in Theorems A.1 and A.2 with p = 1; and Theorem 4 follows from simple calculations.

It remains to prove Theorem 3. For any n € V, it holds that
2fx(0)

R

Vi(n) = V[Y; — g (Z:)| Xi = 07] + V[Y; — g (Z:)| X = 07] + R(n),
where the first two terms on the right-hand side do not depend on 7, and
R(n) = Vug (Zi) = 0(Z:)|Xi = 0] + Vg (Z:) — n(Z:)|X; = 07].

Further, it holds that

Rl = Rl + 0= ) = | 3061 (20 = 5 (2) = (0Z) - mlZ0)1 %, = 07

[\.’)|>—‘

LV [ (W (Z0) — 15 (2) — (0(Z0) — ol Z)|X, = o-}
= R(no) +2V[n(Z;) —no(Z:)| Xi = 0],

where in the last step we use the assumption on continuity of conditional covariances. The
theorem follows from the above decomposition by taking the difference V (n@) — V (n®)
for arbitrary ® and 7® in V. [l

A.4. Proof of Proposition 1. We first note that
0(h: 7y, ir) — O(hs Ty, 7ir) = Op((ra(nh) ™2 + vy uh(nh) ™2 + vy, h?)?).

This equality is an immediate consequence of Theorem 1 and an application of the con-

tinuous mapping theorem as |7p| > 0. Further, using a mean-value expansion, it follows
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that
~ 1 TY ,~

O(h;ny,nr) — 0 = —(Tv(h;ny) — 1v) — = (7r(h; 1) — 7r) + p(0r; y)
TT TT
with
o whay)@e(har) =) (v (i) — ) (Fe(h ir) — mr)
PN, y) = - 5 :

277 (h; iir)? r
where 75.(h; nr) is some intermediate value between 7 and 7r(h; 7). Given our assump-

tions, it follows that
p(ir, i) = Op(((nh)™? + 1?)?).

Part (i) follows analogously to Theorems 1 and 2 and Part (ii) follows from Theorem 3. [

B. DETAILS ON SECTION 5.1

In this section, we formally show that, under suitable assumptions, existing procedures for
bandwidth selection and construction of confidence intervals devised for settings without
covariates can be directly applied to the modified data {(X;, M;(7)) }icp-

B.1. Standard Errors. We generalize the nearest-neighbors standard error from the

main text to the local polynomial regression of an arbitrary order p. Let

~2 g ~ A2 AN A2 ~ R ~ 2
se, ,(h; 1) = Zwi,v,p(h)ai ), o;(0) = Mi(Ms(3)) — Tl Mj(ﬁs(j))) ;
i=1 JER;
where R; is the set of R nearest neighbors of unit ¢ in terms of their running variable
realization on the respective side of the cutoff. Establishing consistency of this standard
error requires the following technical assumption on the first-stage estimator, which is

implied by our main assumptions, for example, if M;(7) is bounded.

Assumption B.1. For all s € [S], it holds that ) ., w}, ()i () = op((nh'+2”)71)
for 0 < v < p, where

Li() = Z (5@ (Z:) = 7(Z2)) — M3y (Z5) — 1(Z5))) (Mi(77) — Ma(7)).

(4.h)eR?

GOE,
Proposition B.1. Suppose that Assumptions 1-5 and B.1 hold. Moreover, suppose that
Assumption 1 also holds with X} replaced by /fh that is an open set s.t. X C Q?h, and
SUD, e, SUP,c 7, Bl(Mi(n) — E[M;(n)|Xi])*|X; = =] is bounded by B for all n € N. Let
further BE[(M;(7)|X; = x] and V[(M;(7)|X; = x| be L-Lipschitz continuous. Then for all
0 <wv <p, it holds that

nh!'v? (se] (h; ) — sel (h;m)) = op(1),
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where se2,,(hi7) = Y0 w2, ,(W)o?(7) and o(n) = V[Mi(7)| X))

1,0,p i

We note that Assumption B.1 could be dropped if we were to study a slight variation
of @i“h;ﬁ) in which we take the R nearest neighbors of unit 7 in terms of running
variable values among units in the same fold to compute 52(7)). However, proceeding like
this would mean that existing software packages that compute nearest neighbor standard

errors would have to be adapted, and could not be applied directly to the modified data
{(Xi, M;(0)) Yicm-

B.2. Confidence Intervals. In this subsection, we discuss three types of confidence
intervals for the RD parameter, based on undersmoothing, robust bias correction, and

bias-aware critical values, respectively.

B.2.1. Undersmoothing. We first consider confidence intervals that are based on an un-
dersmoothing bandwidth of order o(n~'/%). This choice of bandwidth implies that the
smoothing bias shrinks to zero at a faster rate than the standard deviation and can hence

be ignored when constructing confidence intervals. Let
CIL*, = [F(h; ) + zase(h; 7)),

where z, is the (1 — a/2)-quantile of the standard normal distribution. Proposition B.2

shows that C'I{*  is asymptotically valid.

Proposition B.2. Suppose that the assumptions of Proposition B.1 hold for p = 1. If
nh® = o(1), then P(1 € CI*,) > 1 — o+ 0,(1).

B.2.2. Robust bias correction. We now adapt the robust bias corrections of Calonico et al.

(2014) to our setting. To keep the exposition transparent, we focus on the important spe-

cial case where the bandwidth used to obtain the bias correction is the same as the main

bandwidth. In this case, the local linear estimator with a bias correction is numerically

equal to the local quadratic estimator (with the same bandwidth), i.e. 7p2(h; 7). Let
cn, = [5'\0,2(]15 ﬁ) + ZaSAeog(h% ﬁ)}

l—«

Proposition B.3 shows that C'I7% is asymptotically valid.

-«

Proposition B.3. Suppose that the assumptions of Theorem A.2 and Proposition B.1
hold for p=2. If nh™ = o(1), then P(7 € CI{*) > 1 — a + o,(1).

-«

B.2.3. Bias-awareness. We consider a version of the bias-aware approach of Armstrong
and Kolesar (2018) which adjusts the critical values so as to account for the maximal

possible smoothing bias of 7(h; 7). Suppose that |0?E[M;(77)| X; = z]| is bounded by some
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constant B, on either side of the cutoff. Then it follows from the results of Armstrong
and Kolesar (2020) and our Theorem 2 that the asymptotic bias of our covariate-adjusted
RD estimator is bounded in absolute value by b(h) + op(h?), where

T o BM . 2 .

b(h) = 5 w;(h) X sign(X;).

i=1
For implementation, the smoothness bound B); can be selected by inspecting the scat-
ter plot of {(X;, M;(7))}icp); see Kolesar and Rothe (2018), Imbens and Wager (2019),
Armstrong and Kolesar (2020), and Noack and Rothe (2024) for a discussion of various

procedures for choosing the smoothness bound. The proposed confidence interval is
Ch? o = [7(h; 1) £ za(b(h) /50,1 (h; 7)) Seo, (h; )] 4

where z,/(r) is the (1 — a)-quantile of [N (r, 1)|, the folded normal distribution with mean

r and variance one. Proposition B.4 shows that C'I?  is asymptotically valid.

Proposition B.4. Suppose that the assumptions of Proposition B.1 hold for p = 1. If
nh® = O(1), then P(r € CI* ) > 1 — a + 0,(1).

We note that the above bias-aware approach accounts for the smoothing bias sepa-
rately for the regressions on either side of the cutoff, in line with the original proposal
of Armstrong and Kolesar (2018) for settings without covariates. This procedure does
not rely on the asymptotic bias formula in Theorem 2, where the bias contributions
of the adjustment terms on both sides cancel out asymptotically. To exploit this can-
cellation of asymptotic biases, one could construct a confidence interval using a bound
on |02E[Y;|X; = z]| instead of |0*E[M;(77)|X; = z]| in the expression of the worst-case
bias b(h). Such a confidence interval, however, can be expected to be valid only in the

pointwise-in-DGP asymptotics.?!

B.3. Optimal Bandwidth. In our Theorem 4, we show that the bandwidth that mini-

mizes the approximate mean squared error (AMSE) of our proposed estimator is

V() Yo n-1/5
4B? ’

base

hAMSE = (

21Suppose that both E[Y;|X; = 2] and E[7(Z;)|X; = =] are twice continuously differentiable on either
side of the cutoff, with their second derivatives being bounded in absolute value by constants By and
B,), respectively. Then one can show that the conditional bias E[7(h;7)|X] — 7 is bounded in absolute
value uniformly over these function classes by —(Bas/2) > i, wi(h)X? sign(X;), with By = By + By,
Under pointwise asymptotics, the contribution of the adjustment term to the bias vanishes in large
samples under our assumptions, and in finite samples we expect this “worst case” bound to generally be
somewhat pessimistic and the contribution to be relatively small. We still recommend using this general
bound in practice.
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This optimal bandwidth can be consistently estimated by applying the procedure of
Calonico et al. (2014, 5.6) to the modified data {(X;, M;(1s)))}icn using the following
three steps.

Step 0. Initial bandwidths.

(i) Let v, be such that v, — 0 and nv, — oo. In practice, one can set v, =
2.58 min{Sx, IQRx/1.349}n~1/>, where S% and IQRx denote, respectively, the
sample variance and interquartile range of {X; : 1 <7 < n}.

(ii) Choose ¢, such that ¢, — 0 and nc — co. In practice, let

g, = 671/9”_1/9, an _ 7”“25\63,3(1%; 7/7\) -,
2835 (F44(1) — 74(D))
where 7} (7)) is the coefficient on (1/41)X} in the fourth-order global polynomial
regression of M;(7)y;)) on a constant, X;, (1/21)X2, (1/31)X?, and (1/41)X},

the data on the respective side of the cutoff, and B}, for x € {4, —} is the kernel

using

A

constant in the leading bias term of B\qf,p(h; n)

Step 1. Choose a pilot bandwidth b, such that b, — 0 and nb> — oo. In practice, use
the following estimate of the bandwidth that minimizes the AMSE of the estimates of
the second derivative terms in a local quadratic regression:

~ 5nvd 5eg o (vy; 1)

/b\n = ’35711/771—1/7’ B, = 5 )
283 ( (Ba(cns ) + Braleai ) +3523(cai )

Step 2. Estimate hayse by

5 nUnSAeo,l (UnS 7/7\)

h = 0, = _ = : |
483, ( (Ba(bui ) = Bra(bui )+ 35e22(0n: 7))

Proposition B.5. Suppose that the assumptions of Theorem A.2 and Proposition B.1
hold for p =3, X is bounded, P[1/C < [ ,(1) — 714(0)] < C] = 1 for some C > 0, and
Assumption 1 holds with X, replaced by X . Suppose that 8,7 (7)—(—1)"*1 8. (1) is bounded
and bounded away from zero for v € {2,3}. Then ¢, 2 0, ncl 5 oo, [N 0, n?)\fl’ 2 00,

and ﬁn/hAMSE ﬁ) 1.

B.4. Proofs of Propositions B.1-B.5.

B.4.1. Proof of Proposition B.1. To begin with, note that standard kernel calculations
show that: (1) >,y W; . p(h)* = Op((nh'2¥)71) and (ii) max;ef,) Wivp(h)? = op((nh!T27)71).
The proof of Proposition B.1 then requires showing that s/éi,p(h; n) is asymptotically equiv-

alent to the following infeasible version of itself, which uses the deterministic function
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@20 = Y, (0 (M) - 5 3 01

1€[n] JER;
Using arguments as in the proof of Theorem 4 in Noack and Rothe (2024), one can
show that sAe2 (h‘ﬁ) €2, (h;7) = op((nh'™*)~1). It therefore remains to show that
(h n) — (h n) = OP((nh”%) ). We express this difference as the sum of terms

that are hnear in M;(Msy) — Mi(7) = 7(Z;) — 0s()(Z;) and a quadratic remainder:

1
=23 w0 34 M) ) (M) — M)~ 30O y) — My ()
+ Z w2l ( () — M)~ % 5 (M) - M4 )
i€ln] JER:
= Al + 2A2

We first consider As. Let C' denote a generic constant that might change from line to

line. It holds that

A=Yk, ( (20 = W)+ 5 5 a2 - 1(2)P)
JER;
C
< zvp %) wgz,v,p(h) (ASi (ZZ) - 7<Zl))2
Z ( R jii€ER; ) ! v !
~ XX (w2t G X k) G2 - 12
se[S] i€l JrieR;

= Z A275'
s€[9]
For all s € [5], it holds with probability approaching one that
E[A2,5|Xm {Wz}zelg]

<3 (g + G 3wl () | sup sup B [(0(20) — 0(20)71X; = <]

iel, jii€R; NETn 2EXR
<Cy wl,,(h) sup sup E [(n(Z:) — 71(Z:))*| X; = ] = Op((nh* )7 1r2).
. NEn rEAY

As S is finite and Ay is a positive random variable, it follows that Ay = op((nh!*t2%)1).
To show that A; is of order op((nh'*t?")~1), we separate the terms involving the

nearest neighbors in the fold of unit ¢« and those that involve at least one neighbor from
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a different fold. Specifically, we have that:

Ay = % Z wzv,p(h)( Z (Mi(7) — M) (s (Zs) — 1(Zi)) — (o) (Z;) = 7(Z;))) )

i€[n] JLER;

= w0 | X @)~ M) (o () — 0(2) — (R (Z) ~ 0(Z))
i€[n] (J)ER?
GDELZ,

> szv,pw)( ST (M) — M) (R Z0) — 7(Z0) — () — 7(Z,) )

se[S] iels JIER;NI

1
=A+ 72 Z Aig .
s€[S]

By Assumption B.1, it holds that A;; = op((nh**?*)~1). For all s € [S], it holds with
probability approaching one that

E[| A1 2, [Xn, {Wi}iere]
<> wl b)Y E[(Mi(m) — M) Buy (Z5) — 1 Z)Ks AW biere]

i€l Jle(RiNILs)U{:}
<> wl b)Y sup E[(Mi(n) — M) (n(Z;) — 7(Z)))|IX)
icls jle(RinIy)ufiy €T
1/2
< Z w?, ,(h) Z (E[(Mi(n) — My(7))*1X,.] sup E[(n(Z;) — U(Zj))2|Xn]>
icls JlE(RiNI)ULE} n€Tn

= Op((nh'*")"hry),

where the last equality follows from Assumption 1 and the assumption of bounded second

moments. Hence, A; 5 = 0,((nh*™2")~1), which concludes this proof. O

B.4.2. Proof of Proposition B.2. The validity of the CI follows directly from the asymptotic
normality of the local linear estimator established in Theorem A.2 and the fact that the
standard error is consistent. O

B.4.3. Proof of Proposition B.3. Validity of the CI follows directly from asymptotic nor-
mality of the local quadratic estimator established in Theorem A.2 and the fact that the
standard error is consistent. O]

B.4.4. Proof of Proposition B.4. Validity of the CI follows directly from asymptotic nor-
mality of the local linear estimator established in Theorem A.2, the fact that the stan-

dard error is consistent, and that the asymptotic bias is bounded in absolute value by

b(h) + op(h?). O
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B.4.5. Proof of Proposition B.5. The proposition follows, using the consistency of the

standard error established in Proposition B.1, if the following claims hold:
(1) Yia(M) —75a() = op(1),
(1) B3 3(cn; 1) + By s(cn; M) = B3 (M) + By (1) + op(1),
(i) B (bn3 1) — Boa(bui 1) = 85 (1) — By () + op(1).
Part (i). First, note that
n -1 5
Sk ~x (= vrx vk Vr (= ~
74,4(77) - 74,4(”) = 621 <Z X4,iX4,i> ZXM(U(Zi) - ns(i)(Zi))a
i=1 i=1

where )?L — X,;1{X; > 0} and )?4_2 = X,;1{X; < 0}. Further, for s € [S], we have
that

S SECIUCAREACA)| Yl 3B N LS S PAREAEA]

1€ls i€l 1€ls

Note that, with probability approaching one,

%Z(ﬁ(&-) —n0(Z:))*|X,

- Z(ﬁ(zz) — (%))

Xy, (Wj)j€I§] <supE

n€Tn

< sup sup E[(71(Z:) — n(Z:))*|Xi = 2] = o(1).
NETn xEX
It follows that ’% > el X (7(Z;) — ﬁs(i)(Zi))‘ = 0,(1). Since X is bounded, the claim
follows.
Part (i) and (iii). Using steps as in the proof of Theorem A.1, for p € {2,3}, we obtain
that B;,p(h; n) — A;ﬁp(h, 7) = op(1). Moreover, under the assumptions made, B\;,p(h, n) —
Bi(1) = Op(h + (nh'*2)=1/2) The claims follow using the conditions on b, and ¢,. [

C. DETAILS ON THE EMPIRICAL ANALYSIS

In this section, we provide additional details on our empirical analysis described in Sec-

tion 6.

C.1. Data Collection. We conducted an extensive literature search in order to document
how covariates are used in empirical RD designs and to collect data sets on which to
compare our proposed method to the existing approaches. We focused on the publications
in AER, AER Insights, AEJ: Applied Economics, AEJ: Economic Policy, and AEA Papers
and Proceedings between 2018 and 2023. Starting from a Google Scholar search for the
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keywords “regression discontinuity”,?* we first identified 74 articles that appeared to fit
into our theoretical framework,?® and then retained those 16 papers for which the journal’s
replication package contained all the data used in the empirical analysis. In 14 of these
papers, covariates were used in at least one of the reported RD regressions, while in two
papers the available covariates were used only for balance checks but could in principle
have been used in the RD regressions, too. For each paper, we identified the main
specification (or a version thereof) that includes covariates. These specifications often
involve multiple outcomes or running variables, which yielded a total of 56 specifications.
The details on all of them are given in Table S1 in the Online Supplement. In our
reanalysis of these papers, we focus on these main specifications. In the two cases where
only a no covariates RD analysis is reported, we included the covariates that were used

for covariates balance checks.

C.2. Implementation Details. We apply our flexible adjustment RD estimator pro-
posed in Section 3, and we contrast it with the no covariates, conventional linear, and
cross-fitted localized linear adjustment RD estimators. In general, the flexible adjust-
ment is implemented as an ensemble of eight learners listed in Section 3.4 and we use
5-fold cross-fitting with B = 25 data splits. For three specifications with more than
100,000 observations, we speed up the computations by restricting the set of methods
used to the local versions of machine learning methods and using 2-fold cross-fitting with
B =5 data splits. For one specification where the number of observations times covari-
ates exceeds 500,000,000, we use only the local version of random forest as our flexible
adjustment and consider 2-fold cross-fitting with B = 1 data split. We used the rule of
thumb of Imbens and Wager (2019) for the smoothness bound. This choice was dictated
by practical considerations, as it would not be possible to separately discuss the choice
of smoothness bound for each of the 56 specifications. While one can argue whether the
resulting smoothness bound is always appropriate, the qualitative conclusions about the
relative reductions in the confidence interval length are not too sensitive to the choice of

the smoothness bound.
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