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1. INTRODUCTION

In a recent study, Streeck et al. (2020) estimate the infection fatality rate (IFR) of SARS-
CoV-2 infection in a German town that experienced a super-spreading event in mid-February
2020. The study features prominently in Germany’s current political discussion, and has been
covered extensively by major German and international news outlets. Several newspaper ar-
ticles raised the question, however, whether the study reports an accurate confidence interval
(CI) for its IFR estimate.

To explain the issue, consider a stylized version of the setup in Streeck et al. (2020).
There is a population of total size NT , in which NI individuals are infected, and ND units
have died from the infection. The values NT and ND are known from administrative records,
but NI is not directly observed. Instead, the researcher collects a random sample of NS

individuals, and observes that NP of them test positive for the disease. If the test is always
accurate, the IFR can then be estimated by

θ̂ =
ND

N̂I

, where N̂I =
NP

NS

·NT

is an estimate of the number of infected units in the population. Now, the CI for the IFR
reported in Streeck et al. (2020) only takes the sampling uncertainty about N̂I into account,
but treats the number of deaths ND as fixed. The question is whether this is appropriate,
or if ND must be treated as random. We argue that the answer depends on whether θ̂ is
interpreted as an estimate of the IFR among the NI infected individuals, or an estimate of
the IFR among all NT members of the population.
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To clarify this point, we postulate the existence of vectors D = (D1, . . . , DNT
), I =

(I1, . . . , INT
) and S = (S1, . . . , SNT

), with Dj ∈ {0, 1} an indicator for the (possibly counter-
factual) event that the jth individual in the population would have died in the study period
if s/he had been infected with SARS-CoV-2, Ij ∈ {0, 1} an indicator for the jth individual
actually being infected, and Sj ∈ {0, 1} an indicator for the jth individual being included in
the sample. These indicators are such that

NS =

NT∑
j=1

Sj, NP =

NT∑
j=1

SjIj, NI =

NT∑
j=1

Ij, ND =

NT∑
j=1

IjDj, ND,C =

NT∑
j=1

Dj,

with the last term being a new notation for the counterfactual number of deaths one would
have observed if the entire population had been infected at the time of the study.

We consider D to be a fixed feature of the population, and both S and I to be random
vectors whose distribution is determined by the sampling design used in the study and the
process that governs the spread of the infection, respectively. This means that NI and ND

are also random through their dependence on I. There are then two plausible candidates for
the parameter of interest: the IFR among the individuals that were infected at the time of
the study, given by

θ1 =
ND

NI

,

and the IFR for the entire population, given by

θ2 =
ND,C

NT

.

Now consider a CI that only accounts for the uncertainty in θ̂ through its dependence on
N̂I , obtained by scaling a (1−α) CI for the proportion of infected individuals. For example,
if (Lα, Uα) is the Clopper-Pearson CI for the proportion NI/NT , such a CI is given by

Cα
1 =

(
ND

NT · Lα

,
ND

NT · Uα

)
.

This type of CI is reported in Streeck et al. (2020), and it is easily seen to have correct cover-
age for θ1 conditional on I, and therefore it must also have correct coverage unconditionally:

P (θ1 ∈ Cα
1 |I) = 1− α ⇒ P (θ1 ∈ Cα

1 ) = 1− α.

In that sense, the CI in Streeck et al. (2020) is not wrong, but it is a CI for a very particular
target parameter.
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In general, inference on θ2 is going to be more practically relevant since IFR estimates
are typically used to design policy measures that affect the entire population; and Cα

1 clearly
does not have correct coverage for θ2 with or without conditioning on I. Intuitively, an
appropriate CI for θ2 should be wider than Cα

1 , but it is not immediately obvious how such
a CI should be constructed. In the remainder of this note, we propose two approaches that
both result in good coverage properties. To avoid modeling the number of infections, we
seek CIs Cα

2 that are valid conditional on NI ,

P (θ2 ∈ Cα
2 |NI) ≈ 1− α,

as again any CI with approximately correct conditional coverage must have approximately
correct unconditional coverage. Note that the distinction between θ1 and θ2 is similar in
spirit to that of sampling-based and design-based uncertainty in Abadie et al. (2020), but
the details of their framework are very different from ours.

2. ASSUMPTIONS

We impose the following assumptions for our analysis.

Assumption 1. The sampling and infection indicators are independent conditional on NI :

S⊥I|NI

Assumption 2. The infection status of each individual is as good as randomly assigned
conditional on NI , in the sense that for all NT -vectors i = (i1, . . . , iNT

) of dummy variables
with

∑NT

j=1 ij = NI we have that:

P (I = i|NI) =

(
NT

NI

)−1

.

Assumption 3. The individuals included in the study sample are determined by simple
random sampling independently of NI , in the sense that for all NT -vectors s = (s1, . . . , sNT

)

of dummy variables with
∑NT

j=1 sj = NS we have that

P (S = s|NI) =

(
NT

NS

)−1

.

Assumption 1 is natural, and likely to hold even unconditionally. It would be violated,
for example, if individuals with knowledge of their infection status are more or less like to
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participate in the study. Assumption 2 implies that the individuals infected at the time of
the study are representative for the entire population. This rules out, for example, different
age groups being affected more or less severely over the course of the pandemic. Note that
the “success” probability NI/NT can be changed to accommodate infection testing with less
than 100% sensitivity and specificity. Assumption 3 can easily be adapted if the sample
of NS individuals is obtained though a different sampling scheme, such as cluster sampling.
Note that an equivalent definition of θ2 under the above assumptions is given by

θ2 = E
(
ND

NI

)
.

The parameter can thus be interpreted as an “average” IFR, where the averaging is done
with respect to the distribution of I. This representation also makes it more apparent that
θ̂ is actually a suitable estimate of θ2.

Since θ̂ depends on S and I through NP and ND only, it is also useful to state the im-
plications of the above assumptions for the joint distribution of the latter two quantities
conditional on NI . Simple calculations show that this joint conditional distribution corre-
sponds to two independent binomials:

NP⊥ND|NI , NP |NI ∼ Binomial
(
NS,

NI

NT

)
, ND|NI ∼ Binomial (NI , θ2) .

These distributions should be kept in mind for the following arguments.

3. CONFIDENCE SETS

Consider a test of the null hypothesis H0 : θ2 = θo that uses the estimated IFR θ̂ as the test
statistic. We propose to construct (1− α) CIs for θ2 by collecting all values of θo for which
the p-value of such a test is less than α. With conditioning on NI , the number of infections
effectively becomes a nuisance parameter in this testing problem; and since NI is unknown
no exact p-value is feasible in this setup. However, we can still use existing statistical
approaches to obtain CIs with good coverage properties. We specifically consider one based
on the parametric bootstrap, and one based on varying NI over a “large” preliminary CI.

To describe these two approaches in our context, we introduce some notation. For con-
stants nI and θo, let N∗

P and N∗
D be independent random variables that each follow particular

binomial distributions that only depend on the constants and other observable quantities:

N∗
P⊥N∗

D, N∗
P ∼ Binomial

(
NS,

nI

NT

)
, N∗

D ∼ Binomial (nI , θ
o) .
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We also put N̂∗
I = NTN

∗
P/NS, and denote the CDF of the ratio N∗

P/N̂
∗
I by

G(c|nI , θ
o) = P

(
N∗

D

N̂∗
I

≤ c

)
.

There is no simple closed form expression for this distribution function, but it can easily be
computed through standard numerical methods for any value of the constants nI and θo. For
example, one can compute G(c|nI , θ

o) to desired accuracy by simulating a sufficiently large
number of draws from the distribution of (N∗

P , N
∗
D), and then taking the empirical CDF of

the resulting realizations of N∗
P/N̂

∗
I .

The function G(c|NI , θ2) is the CDF of θ̂ conditional on NI under the statistical model
described above, and G(c|NI , θ

o) is the CDF under H0 : θ2 = θo. If NI was observed, an
equal-tailed p-value for a test of H0 based on θ̂ would be given by

p(θo, NI) = 2min
{
Ĝ(θ̂|NI , θ

o), 1− Ĝ(θ̂|NI , θ
o)
}
.

Using a “plug-in” or parametric bootstrap approach (e.g. Horowitz, 2001; Hall, 2013), we
can substitute the estimator N̂I into the p-value formula to construct a feasible CI for θ2:

Cα
2,PB = {θo : p(θo, N̂I) ≥ α}.

This CI is easily seen to have correct asymptotic coverage of θ2 conditional on NI under any
sequence for which N̂I/NI = 1 + oP (1). That is, it holds that

P (θ2 ∈ Cα
2,PB|NI) = 1− α + oP (1) if N̂I/NI = 1 + oP (1).

If the sample size NS is rather large, it can be reasonable to treat N̂I as a consistent estimate
of NI , in which case the above result implies that Cα

2,PB has approximately correct finite
sample coverage of θ2.

If the goal is to have a CI with guaranteed finite sample coverage, a different method can
be used to compute a p-value. Let [Lβ;Uβ] be a standard (1 − β) Clopper-Pearson CI for
the share NI/NT of infected individuals in the population, so that Cβ = [NTLβ;NTUβ] is a
(1− β) CI for the number of infections NI , for some β substantially smaller than α. We can
then obtain a new p-value by maximizing p(θo, nI) over nI ∈ Cβ, and correcting the result
for the fact that β is not zero (Berger and Boos, 1994; Silvapulle, 1996). This yields the
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following CI for θ2:

Cα
2,CS =

{
θo : sup

nI∈Cβ

p(θo, nI) + β ≥ α

}
.

This CI has conditional coverage of at least 1− α in finite samples:

P (θ2 ∈ Cα
2,CS|NI) ≥ 1− α.

The CI is conservative, however, in that the last inequality is generally strict. Exact coverage
only occurs in the unlikely scenario that the supremum in the definition of the p-value is
attained at NI , which happens only if NI coincides with one of the boundaries of Cβ.

4. NUMERICAL ILLUSTRATION

We illustrate methods described above with numerical values taken from Streeck et al. (2020).
The town investigated in that study has NT = 12, 597 inhabitants, of which ND = 7 died in
the study period with a SARS-CoV-2 infection. Out of a sample of NS = 919 individuals,
NP = 138 tested positive for SARS-CoV-2. This corresponds to an infection rate of NP/NS =

15.0% in the sample, an estimated N̂I = 1892 infected individuals in the population, and an
estimated IFR of θ̂ = 0.37%. Setting α = .05 and β = .01, we obtain the CIs

Cα
1 = [0.32%; 0.43%], Cα

2,PB = [0.16%; 0.74%], Cα
2,CS = [0.14%; 0.81%].

Recall that the first of these CIs has θ1 as the target parameter, while the latter two aim
for coverage of θ2. As expected, the latter two CIs are substantially wider than the first.
We would argue that they are also more appropriate measures of uncertainty about the
IFR estimate, since this quantity is used to design policy measures that affect the entire
population.

We note that Streeck et al. (2020) actually report an estimated 1,956 infected individuals,
an IFR of .36%, and a CI for the IFR of [0.29%; 0.45%]. These results differ from the N̂I , θ̂
and Cα

1 given above for two reasons: first, Streeck et al. (2020) apply an adjustment factor
to the raw infection rate in their sample to account for the sensitivity and specificity of
their test for SARS-CoV-2 infection; and second, their sample is generated through a form
of cluster sampling, which leads to a slightly wider CI relative to simple random sampling.
Such adjustments should also slightly widen our CIs for θ2.
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5. DISCUSSION

While this note is motivated by research on the current SARS-CoV-2 pandemic, the CIs
proposed here could also be used in other contexts in which researchers want to combine
sample and population data in a similar fashion. To give an economic example, suppose that
there is a group of individuals that qualify for benefits from some public program, and that
the researcher is interested in the share of these individuals that actually receive benefits
(this share could be small if the program is not well-known, difficult to apply for, or comes
with social stigma). This then fits into the framework of this note if the number of benefit
recipients is known to administrators, but the number of qualifying individuals needs to be
estimated from survey data.
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