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1. INTRODUCTION

Many economic studies estimate average treatment effects (ATEs) under the assumption

that the treatment assignment is unconfounded, or independent of potential outcomes given

a set of covariates; see Imbens (2004) or Imbens and Wooldridge (2009) for surveys. An

important quantity in this context is the propensity score, which is defined the conditional

probability of receiving the treatment given the covariates. In this paper, we are concerned

with the role played by knowledge of the propensity score for estimating ATEs. While our

main motivation for studying this question is theoretical, the issue is also relevant for certain

empirical applications in which propensity scores can reasonably be modeled as known to

the analyst. Examples include settings with data from randomized experiments, where the

propensity score is defined by the study design, and settings with substantially more data on

treatment assignments and covariates than on outcomes, where sampling uncertainty about

the estimated value of the propensity score is negligible. The latter setting could arise for

instance if treatment assignments and covariates are recorded in large and easily accessible

administrative data sets, while information on outcomes is only available through expensive

specialized, and thus rather small-scale, surveys.

The importance of the propensity score stems from the result that in models with uncon-

foundedness treatment assignments are not only independent of potential outcomes given

the covariates, but also given the propensity score alone (Rosenbaum and Rubin, 1983).

Working with the full set of covariates is thus not necessary to remove bias associated with

differences in pre-treatment variables when the propensity score is known. Despite this pow-

erful “dimension reduction” property of the propensity score, adjusting for covariates leads

to an asymptotically efficient ATE estimator, while adjusting for a known propensity score

does not (Hahn, 1998). Moreover, many empirical strategies for estimating ATEs have the

puzzling feature that they are more efficient when an estimate of the propensity score is used

rather than the true value. Results of this type have been obtained for example by Hirano,
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Imbens, and Ridder (2003) for inverse probability weighting, Imai and van Dyk (2004) for

subclassification, Abadie and Imbens (2016) for nearest neighbor matching, and Hahn and

Ridder (2013) and Mammen, Rothe, and Schienle (2016) for propensity score-based regres-

sion adjustment. Moreover, Hahn (1998) shows that the semiparametric efficiency bound for

estimating the ATE is the same whether the propensity score is known or not, and many

estimators achieve this bound when the propensity score is unknown (e.g. Hahn, 1998; Hi-

rano, Imbens, and Ridder, 2003; Imbens, Newey, and Ridder, 2007; Chen, Hong, and Tarozzi,

2008; Rothe and Firpo, 2016). Existing results thus seem to suggest that there is no scope

for exploiting knowledge of the propensity score for estimation purposes, and that any such

attempt might even be harmful.

This paper makes progress towards resolving this “propensity score paradox” (Angrist and

Pischke, 2008). We show, the above-mentioned results notwithstanding, that knowledge of

the propensity score is indeed immensely useful, as it can be exploited for the construction of

an ATE estimator that has superior theoretical and practical properties relative to procedures

that ignore such knowledge. Building on ideas from the double robustness literature (e.g.

Robins, Rotnitzky, and Zhao, 1994; Robins and Rotnitzky, 1995), the proposed estimator

takes the form of an average of a sample analogue of the ATE’s efficient influence function.

This function depends on the data, the true propensity score, and the conditional expectation

of the outcome given the treatment and the covariates. The latter is an unknown nuisance

function that is estimated nonparametrically from the data.

We show that this construction leads to an ATE estimator that is fully efficient as long

as the conditional expectation function is estimated consistently, and some weak regularity

conditions hold. In contrast to other efficient ATE estimators, no restrictions on the bias of

the nonparametric first-stage estimator are necessary for obtaining this result. Knowledge of

the propensity score thus allows working with an “over-smoothed” nonparametric estimate

of the conditional expectation function that converges very slowly, which alleviates concerns
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about the “curse of dimensionality” in settings with many covariates (cf. Robins and Ritov,

1997; Angrist and Hahn, 2004). This shows that knowing the propensity score not only serves

as a dimension reduction device for the purpose of identification, but also for the purpose of

efficient ATE estimation. To the best of our knowledge, this point seems to be new in the

literature.

We also show that inference based on a simple estimate of the asymptotic variance of our

estimator remains valid even if the conditional expectation function is estimated inconsis-

tently. In this case our proposed ATE estimator becomes inefficient, but it remains consistent

and asymptotically normal, and the variance estimate that we propose remains consistent as

well. Inference also remains valid if the estimate of the conditional expectation is based on a

parametric model, and the ATE estimator would be fully efficient if that parametric model

was correctly specified. Knowledge of the propensity score thus allows for inference that is

remarkably robust with respect to variation in the implementation details of the estimator

of the conditional expectation function.

The remainder of the paper is structured as follows. In the new section, we introduce

the model, review some existing estimation approaches, and introduce the new estimator.

In Section 3, we derive its theoretical properties. Section 4 presents some simulation results,

and Section 5 concludes. All proofs are collected in the Appendix.

2. ESTIMATION WITH KNOWLEDGE OF THE PROPENSITY SCORE

In this section we first introduce the model and review some existing results on ATE

estimation under unconfoundedness, and then introduce the proposed estimator for settings

where the propensity score is known, and describe the rationale behind it.

2.1. The Model. We are interested in estimating the effect of a binary treatment on some

economic outcome based on a random sample of n units from a large population. For each

unit i, we observe the outcome Yi ∈ Y ⊂ R, a treatment indicator Ti ∈ {0, 1}, with Ti = 1 if
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unit i is treated and Ti = 0 otherwise, and a vector of covariates Xi ∈ X ⊂ R
d. We define

Yi(1) and Yi(0) as the potential outcomes of unit i with and without receiving the treatment,

respectively, so that the observed outcome satisfies Yi = Yi(Ti). The parameter of interest is

the average treatment effect

τ = E(Yi(1) − Yi(0)).

Following Rosenbaum and Rubin (1983), the treatment assignment is assumed to be uncon-

founded, or independent of the potential outcomes conditional on the covariates. We also

assume that the propensity score function π(x) = P (Ti = 1|Xi = x) is bounded away from

zero and one, and known to the analyst.

Assumption 1. (i) Yi(1), Yi(0)⊥Ti|Xi almost surely; (ii) ǫ ≤ π(Xi) ≤ 1 − ǫ almost surely,

for some ǫ > 0; (iii) the propensity score function π(x) is known.

Assumption 1(i)–(ii) are standard in the treatment effects literature. The former condi-

tion implies that adjusting for Xi eliminates all biases due to confounding in comparisons

between treated and untreated units, whereas the latter condition ensures that there are

both treated and untreated units in every region of the support X of the covariates. Khan

and Tamer (2010) point out that without Assumption 1(ii) no regular estimator of τ might

exist. Assumption 1(iii) is natural in the context of randomized experiments, where the

propensity score is specified by the study design. Assuming that the propensity score is

known is generally difficult to justify with observational data, but it could be a reasonable

approximation for example in settings where there is a large additional data set with infor-

mation on treatment assignments and covariates, such that sampling uncertainty about the

estimated value of the propensity score effectively becomes negligible.

2.2. Previous Results. Estimation of ATEs under unconfoundedness has been widely con-

sidered in the program evaluation literature with and without the assumption that the
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propensity score is known; and the problem also has close analogues in the literature on

missing data. Let µ(t, x) = E(Yi|Ti = t,Xi = x) and σ2(t, x) = V(Yi|Ti = t,Xi = x)

be the conditional expectation and variance, respectively, of Yi given Ti = t and Xi = x.

Hahn (1998) shows that under Assumption 1(i)–(ii) the semiparametric efficiency bound for

estimating τ is given by

Veff = E

(

σ2(1, Xi)

π(Xi)
+

σ2(0, Xi)

1 − π(Xi)

)

+ V(µ(1, Xi) − µ(1, Xi)),

and that the corresponding efficient influence function is given by ψi(π, µ) − τ , where

ψi(π, µ) =
TiYi

π(Xi)
− (1 − Ti)Yi

1 − π(Xi)
− (Ti − π(Xi))

(

µ(1, Xi)

π(Xi)
− µ(0, Xi)

1 − π(Xi)

)

,

so that Veff = V(ψi(π, µ)). This means that the asymptotic variance of any regular estimator

τ̂ of τ is bounded from below by Veff, and any regular estimator whose asymptotic variance

achieves the bound is such that

√
n(τ̂ − τ) =

1√
n

n
∑

i=1

(ψi(π, µ) − τ) + oP (1)
d→ N(0, Veff). (2.1)

Hahn (1998) also shows that additionally imposing Assumption 1(iii) does not change the

semiparametric efficiency bound for estimating τ , and thus knowledge of the propensity score

cannot be used to construct a regular estimator whose asymptotic variance is strictly smaller

than Veff.

A number of estimators that reach the semiparametric efficiency bound, and thus sat-

isfy the representation (2.1), under certain regularity conditions have been proposed in the

literature.1 These estimators require nonparametric estimation of an unknown function,

typically either the conditional expectation function or the propensity score. Hahn (1998),

1In addition, there are many empirical strategies for estimating ATEs that generally do not achieve the
semiparametric efficiency bound, but that are nevertheless popular in practice for various reasons. Examples
include different forms of matching, among many others; see Imbens (2004) or Imbens and Wooldridge (2009)
for further details.
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Imbens, Newey, and Ridder (2007) and Chen, Hong, and Tarozzi (2008) consider regression

adjustment estimators (sometimes also called imputation estimators) of the form

τ̂reg =
1

n

n
∑

i=1

(µ̂(1, Xi) − µ̂(0, Xi)) ,

with Imbens, Newey, and Ridder (2007) and Chen, Hong, and Tarozzi (2008) estimating

µ(t, ·) directly through a nonparametric regression of Yi on Xi in the subgroup with Ti = t,

and Hahn (1998) using more indirect estimators of the form µ̂(1, Xi) = Ê(YiTi|Xi)/π̂(Xi)

and µ̂(0, Xi) = Ê(Yi(1 − Ti)|Xi)/(1 − π̂(Xi)). Hirano, Imbens, and Ridder (2003) propose

an inverse probability weighting estimator, which weights outcomes by the inverse of the

estimated propensity score:

τ̂ipw =
1

n

n
∑

i=1

(

TiYi

π̂(Xi)
− (1 − Ti)Yi

1 − π̂(Xi)

)

.

Rothe and Firpo (2016) study a nonparametric version of the double robust estimator2 of

Robins, Rotnitzky, and Zhao (1994) or Robins and Rotnitzky (1995), which is of the form:

τ̂dr =
1

n

n
∑

i=1

(

TiYi

π̂(Xi)
− (1 − Ti)Yi

1 − π̂(Xi)
− (Ti − π̂(Xi))

(

µ̂(1, Xi)

π̂(Xi)
− µ̂(0, Xi)

1 − π̂(Xi)

))

;

This estimator can be written as τ̂dr = (1/n)
∑n

i=1 ψi(π̂, µ̂), and is thus a sample average of

a sample analogue of the efficient influence function. Robins, Rotnitzky, and Zhao (1994)

and Robins and Rotnitzky (1995) show that this estimator also reaches the semiparametric

efficiency bound if estimates of both the propensity score and the conditional expectation

function are based on correctly specified parametric models, a property to which they refer as

local efficiency.3 We remark that all the aforementioned estimators are affected by the “curse

of dimensionality”, in the sense that ever-stricter regularity conditions need to be imposed

2See Cattaneo (2010) for an earlier use of this construction in a settings with a multi-valued treatment.
3The eponymous property of doubly robust estimators is that they remain

√
n-consistent and asymptot-

ically normal if only one of the parametric specifications is correct, although they are no longer efficient in
this case.
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in settings with multiple covariates in order for these estimators to reach the semiparametric

efficiency bound, albeit to a different extent.

2.3. A New Estimator. Any of the estimators described in the previous subsection can

also be used when the propensity score is known by simply ignoring such knowledge, and

continues to reach the semiparametric efficiency bound in this case. Moreover, most ATE

estimators that involve an estimate of the propensity score become less efficient when said

estimate is replaced with the true propensity score. This is the case for the inverse probability

weighting estimator, for example, but also for other estimators not explicitly mentioned in

the previous subsection (e.g. Hahn, 1998; Imai and van Dyk, 2004; Abadie and Imbens, 2016).

It does not seem to be much appreciated in the economics literature, however, that this

is not the case for all ATE estimators that use an estimate of the propensity score. In

particular, the doubly robust estimator remains efficient if the true value of the propensity

score is used instead of an estimate; see below for details. We denote this estimator by

τ̂kps =
1

n

n
∑

i=1

ψi(π, µ̂),

where the subscript “kps” stands for “known propensity score”, and we refer to it as the

KPS estimator in the following.

We consider this estimator for the use in settings where the propensity score is known.

Like the regression adjustment estimators, the KPS estimator also uses on an estimate µ̂ of

the conditional expectation function µ, which we propose to obtain by running nonparametric

regressions of Yi on Xi separately in the subpopulations of treated and untreated units. We

do not require the estimator µ̂ to be of a particular type otherwise. Instead, our main

results below are derived under “high-level” conditions that hold for all commonly used

nonparametric regression methods, such as local polynomial regression or series estimation,
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under weak regularity conditions. We also define

V̂kps =
1

n

n
∑

i=1

(ψi(π, µ̂) − τ̂kps)
2,

which is going to be a suitable estimate of the asymptotic variance of τ̂kps in great generality

for reasons outlined below.

2.4. Rationale Behind the KPS Estimator. Since τ̂kps takes the form of the sample

average of an estimate of the efficient influence function, following Newey (1994, Proposition

3) we expect that τ̂kps satisfies the representation (2.1), and thus achieves the semiparametric

efficiency bound, under certain regularity conditions; just like the estimators described in

Section 2.2. While using the KPS estimator does thus not yield an improvement in terms

of first order asymptotic variance relative to existing methods, we argue that this estimator

is nevertheless preferable in settings where the propensity score is known. This is due to its

better second order asymptotic properties, which translate into substantial improvements in

finite sample performance.

While we explain this point formally in the next section, it is nevertheless useful to

consider an overview of the argument. Let Rn(t) = t− (1/n)
∑n

i=1 ψi(π, µ), and note that a

necessary and sufficient condition for any regular estimator τ̂ of τ to reach the semiparametric

efficiency bound is that |Rn(τ̂)| = oP (n−1/2). For the estimators described in Section 2.2,

this condition is achieved through assumptions that imply a high degree of accuracy of the

nonparametric estimate of the respective nuisance function.4 Typical requirements include

a uniform rate of convergence that is faster than n−1/4, which implies that both the bias

and the variance of the nonparametric estimate are “sufficiently” small. As pointed out for

example by Linton (1995) or Robins and Ritov (1997), asymptotic approximations based

on such conditions can be fragile in practice, especially in settings with many covariates.

4Such assumptions are commonly made in the literature on the properties of “two-step” estimators that
depend on a nonparametrically estimated function; see for example Newey (1994), Newey and McFadden
(1994), Chen, Linton, and Van Keilegom (2003), or Ichimura and Lee (2010).
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Correspondingly, the finite sample behavior of the estimators described in Section 2.2 can

differ substantially from the predictions of first order asymptotic theory (e.g. Angrist and

Hahn, 2004; Rothe and Firpo, 2016).

Knowledge of the propensity score solves this problem if it is exploited properly. Below,

we show for the KPS estimator it holds that |Rn(τ̂kps)| = oP (n−1/2) without imposing re-

strictions on the rate at which the bias of µ̂ tends to zero. This turns out to be the case in

great generality, and not just for a particular nonparametric estimation method. The KPS

estimator can thus be fully efficient even if µ̂ converges arbitrarily slowly. Intuitively, this is

because the KPS estimator is implicitly based on the moment condition g(µ, τ) = 0, where

g(m, t) = E(ψi(π,m) − t), and this moment condition is very insensitive the variation in the

conditional expectation function µ, in the sense that ∂k
m [g(m, τ)]m=µ = 0 for all k ∈ N, where

∂k
m is the kth order functional derivative operator with respect to m. That is, derivatives of

the moment condition with respect to the nuisance function of any order are equal to zero.

The KPS estimator then “inherits” the insensitivity of the moment condition, and is thus

robust with respect to variation in the estimate of µ.

3. LARGE SAMPLE PROPERTIES

In this section, we first formally study the properties of τ̂kps under a set of general “high-

level” conditions on µ̂. We then derive some more specific results for the special case that

µ is estimated via local polynomial regression, and finally comment on the case where µ̂ is

based on a parametric specification of µ.

3.1. General Conditions. Our first results concern the large sample properties of τ̂kps

under general conditions on the properties of the estimator µ̂. The following notation is

helpful for presenting them. For any class of functions M over {0, 1} × X , let N2(ǫ,M)

be the minimum number of ǫ-brackets with respect to the L2(P ) norm needed to cover M,

where for two functions u, l ∈ M the set {f ∈ M : l(t, x) ≤ f(t, x) ≤ u(t, x) for all (t, x)} is
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called an ǫ-bracket with respect to L2(P ) if E((l(Ti, Xi) − u(Ti, Xi))
2) < ǫ2. We also write

a(η) . b(η) for generic functions a, b if a(η) ≤ Cb(η) for some constant C not depending on

η, and for s = (s1, . . . , sd) a vector of non-negative integers and |s| =
∑d

j=1 sj the notation

∂s
xm(t, x) = ∂s1

x1
. . . ∂sd

xd
m(t, x) denotes the partial derivatives with respect to x of a generic

function m. All limits are taken as n → ∞. We impose two “high level” assumptions about

the estimator µ̂.

Assumption 2. There exists a sequence µn of non-random functions, a non-random function

µ̄, and sequences an = o(1) and bn = o(1) of constants such that ‖µ̂ − µn‖∞ = OP (an) and

‖µn − µ̄‖∞ = O(bn).

The idea behind this assumption is to put µ̄ = µ, and to define the function µn as the

sum of the true conditional expectation function µ and the asymptotic bias of the respective

nonparametric estimator. With such a choice of µ̄ and µn, Assumption 2 simply requires

that the stochastic part and the bias of µ̂ converge to zero uniformly, and denotes the cor-

responding rates by an and bn, respectively. Uniform convergence results for nonparametric

regression estimators are widely available in the literature; see e.g. Newey (1997) for series

estimators and Masry (1996) for local polynomial regression. For reasons that will become

clear below, we also want to allow for the case that µ̂ is potentially inconsistent. This means

that µ̄ 6= µ, and then the assumption only implies uniform convergence of µ̂ to a non-random

probability limit, with an and bn denoting the rates at which the stochastic part and the

“pseudo-bias” tend to zero, respectively.

Assumption 3. There exists a sequence Mn of function classes such that P (µ̂−µn ∈ Mn) =

1 + o(1) and N2(ǫ,M∗
n) . exp(ǫ−αcn) for α ∈ (0, 2), a sequence of constants cn = o(aα−2

n ),

and all ǫ < an, where M∗
n = Mn ∩ {m ∈ Mn : ‖m− µn‖∞ ≤ an}

This assumption states that the estimator µ̂ takes values in a function class whose entropy

with bracketing (which is defined as the natural logarithm of the covering number) does not
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grow too quickly as the sample size increases. Entropy restrictions of this type are commonly

found in the literature on semiparametric two-step estimation. As explained below, this

assumption does imply restrictions on the rate an of the stochastic component of µ̂, but

it implies no restrictions on bn. For most nonparametric estimators, it is natural to take

Mn as a smoothness class, such as that of functions with bounded partial derivatives up

to a particular order.5 The role of Assumption 3 is to ensure that the estimator µ̂ is such

that there is no overfitting of the data, by requiring that it takes values in a class whose

elements cannot be “too complex”; see e.g. van der Vaart (1998) for further details on the

interpretation of restrictions on covering numbers.

Under our assumptions, we obtain the following result about the large sample properties

of the KPS estimator and the corresponding variance estimate.

Theorem 1. Suppose that Assumptions 1–3 hold. Then

√
n(τ̂kps − τ)

d→ N(0,V(ψi(π, µ̄))) and V̂kps = V(ψi(π, µ̄)) + oP (1).

If in addition µ̄ = µ, then V(ψi(π, µ̄)) = Veff and thus τ̂kps reaches the semiparametric

efficiency bound.

The theorem shows that τ̂kps is
√
n-consistent for τ , asymptotically normal, asymptot-

ically unbiased, and that it reaches the semiparametric efficiency bound if µ̂ consistently

estimates µ. It also shows that the simple variance estimator V̂kps is consistent, which im-

plies the validity of standard large sample methods for inference. What is remarkable relative

to analogous results for other efficient estimators of τ , however, is that Theorem 1 holds with-

out any restrictions on the rate bn at which the bias of µ̂ tends to zero. We can therefore

satisfy Assumptions 2 and 3 by choosing an estimator µ̂ that sufficiently “over-smooths”

5The assumption also allows Mn to consist of the sum of one potentially non-smooth function and other
functions from a smoothness class. This extension allows us to deal with settings where the bias of µ̂ is not
a smooth function itself.
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the data, since for all commonly used nonparametric regression estimators increasing the

amount of smoothing increases the rate of convergence of the stochastic part and decreases

the “complexity” of the estimated function.6 The fact that more smoothing also slows down

the rate at which the bias tends to zero, which would be a problem for other estimators, is

of no concern in our setting. The following example further illustrates this point.

Example 1. Suppose that X ⊂ R
d is compact, and let Mn be the collection of all functions

m defined over {0, 1} × X such that the partial derivatives of m(t, ·) up to order l > d/2 are

uniformly bounded by cn for t = 0, 1. Then N2(ǫ,M∗
n) . exp(ǫ−d/lcn); see van der Vaart

(1998, Example 19.9). Now suppose that there is a single continuously distributed covariate,

and that µ̂ is the local linear regression estimator with bandwidth h. Then by arguing as

in Ojeda (2008) and Portier and Segers (2015) it follows that under standard regularity

conditions one can choose a function µn such that

‖∂s
xµ̂− ∂s

xµn‖∞ = OP





(

log(n)

nh1+2s

)1/2


 for s = 0, 1, 2, and ‖µn − µ‖∞ = O(h2)

if µ(t, ·) has bounded second-order partial derivatives. Assumptions 2 and 3 then hold for

example with l = 2, α = 1/2, an = (nh5/ log(n))−1/2, bn = h2 and cn = (nh/ log(n))−1/2 if

h ∝ n−θ with 0 < θ < 5/13. That is, we only need that h does not tend to zero too quickly,

but it is allowed to vanish arbitrarily slowly.7

Theorem 1 thus implies that a estimator of the nuisance parameter µ with very slowly

vanishing bias suffices for constructing an efficient estimator of τ when the propensity score

is known, whereas efficiency of the alternative estimators described in Section 2.2 generally

6With local polynomial regression, for example, increasing the bandwidth decreases the variance and
leads to a more regular estimate. Similarly, the variance of a series estimator decreases if a smaller number
of series terms is chosen, and the complexity of the estimated function is being reduced.

7A similar reasoning applies to higher-dimensional settings and local polynomial estimators of different
order. It also implies to other estimation procedures like series estimators, for which Assumptions 2 and 3
can be shown to be satisfied whenever the number of series terms increases sufficiently slowly with the sample
size.
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requires the stochastic part and the bias of the respective nonparametric components to

converge with a rate that is o(n−1/4). As pointed out for example by Linton (1995) or

Robins and Ritov (1997), asymptotic approximations to the distribution of some estimator

that rely on the assumption of a very accurate nonparametric estimate of a nuisance function

can be fragile in practice. For this reason, we expect inference based on Theorem 1 to more

accurate in finite samples than inference based on alternative efficient estimators described

in Section 2.2. This means for example that a standard confidence interval of the form

[

τ̂kps ± 1.96 × (V̂kps/n)1/2
]

(3.1)

should not only cover τ with 95% probability asymptotically, but also that in finite samples

the coverage level should be approximately correct and rather robust to variations in how

the estimation of µ is implemented. This is the type of improvement one can achieve from

exploiting knowledge of the propensity score.

Theorem 1 also shows that the confidence interval (3.1) should remain approximately

valid in finite samples if µ̂ is such that its finite sample bias is very large. This is not a priori

obvious, and it might at first seem like an abuse of asymptotics to leverage an approximation

based on the fact that a bias term tends to zero asymptotically when in finite samples its

magnitude is substantial. However, Theorem 1 covers the case that µ̄ 6= µ, which means

that µ̂ is inconsistent for µ. While τ̂kps is no longer efficient in such a setting, it remains
√
n-

consistent for τ , asymptotically normal, and asymptotically unbiased in this case; and the

simple variance estimator V̂kps remains consistent for its asymptotic variance. We interpret

this finding as a further robustness result regarding inference based on τ̂kps. Again, this is a

rather unique feature for inference based on a treatment effect estimator, and it is obtained

by exploiting knowledge of the propensity score.

3.2. Local Polynomial Regression. The result in Theorem 1 is based on deriving a

bound on the difference between
√
n(τ̂kps − τ) and its asymptotically linear representation
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using techniques from empirical process theory. For the case that µ̂ consistently estimates

µ, that is µ̄ = µ, this bound is given by

√
n(τ̂kps − τ) − 1√

n

n
∑

i=1

(ψi(π, µ) − τ) = OP (c1/2
n a1−α/2

n ) +OP (bn).

This is a “worst case” bound that is valid for all nonparametric estimators µ̂, including

hypothetical or infeasible ones, as long as they satisfy the high level conditions laid out in

Assumptions 2 and 3. For a specific nonparametric estimation procedure, this bound can

generally be improved. This is illustrated in this subsection for the case that µ̂ is obtained

by local polynomial regression, carried out separately in the subpopulations of treated and

untreated units.

Local polynomial regression is a class of kernel-based smoothers that has been studied

extensively by Fan (1993), Ruppert and Wand (1994), Fan and Gijbels (1996) and others.

It is well-known to have attractive bias properties relative to other kernel-based methods,

such as the Nadaraya-Watson estimator. We use the following notation. For generic vectors

b = (b1, . . . , bd) and a = (a(0,...,0), a(1,0,...,0), . . . , a(0,...,0,l)), let Pl,a(b) =
∑

0≤|s|≤l asb
s be a

polynomial of order l, where
∑

0≤|s|≤l denotes the summation over all d-vectors s of positive

integers with 0 ≤ |s| ≤ l. Also let K be a univariate probability density function, put

Kh(b) =
∏d

j=1 K(bj/h)/h for any bandwidth h ∈ R+, and define

â(t, x) = argmin
α

n
∑

i=1

(Yi − Pl,α(Xi − x))2 Kh(Xi − x)I{Ti = t}.

Then the lth order local polynomial estimator of µ(t, x) is given by

µ̂(t, x) = â(0,...,0)(t, x).

Note that we are using the same bandwidth for each component of the covariate vector Xi

for notational convenience only, and that more general bandwidth choices are possible. The

following assumption collects some regularity conditions that are standard in the literature
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on local polynomial regression.

Assumption 4. (i) Xi is continuously distributed given Ti = t with compact and convex

support for t = 0, 1; (ii) the corresponding conditional density functions are bounded, have

bounded first order derivatives, and are bounded away from zero, uniformly over the re-

spective support; (iii) µ(t, ·) is (l + 1)-times continuously differentiable for t = 0, 1; (iv)

supx E(|Yi|2+δ|Ti = t,X = x) < ∞ for some constant δ > 0 and t = 0, 1; (v) the ker-

nel K is twice continuously differentiable, and such that
∫ K(u)du = 1,

∫

uK(u)du = 0,

∫ |u2K(u)|du < ∞, and K(u) = 0 for u not contained in some compact set.

Under this assumption, we obtain the following characterization of the second order terms

of the estimator τ̂kps if µ is estimated by local polynomial regression.

Theorem 2. Suppose that Assumptions 1 and 4 hold, and that the bandwidth h is such that

h → 0 and n2h3d/ log(n)3 → ∞ as n → ∞. Then

√
n(τ̂kps − τ) − 1√

n

n
∑

i=1

(ψi(π, µ) − τ) = OP (hl+1) +OP (n−1/2h−d/2) = oP (1).

Theorem 2 substantially improves upon the result in Example 1. In particular, it im-

plies that for τ̂kps to reach the semiparametric efficiency bound it is not necessary to re-

quire a degree of smoothness of µ(t, ·) that depends on the dimensionality of the covari-

ates. If µ̂ is estimated by local linear regression, for example, the theorem shows that

√
n(τ̂kps − τ)

d→ N(0, Veff) irrespective of the value of d when µ(t, ·) is only twice continu-

ously differentiable and the bandwidth satisfies h ∝ n−θ with 0 < θ < 2/(3d). In this regard,

the KPS estimator differs markedly from the other procedures discussed in Section 2.2, which

all require higher-order differentiability conditions on the respective nuisance function in set-

tings with many covariates in order to control the magnitude of the asymptotic bias of the

respective nonparametric estimate. Knowledge of the propensity score therefore acts like a

“dimension reduction” device.
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An inspection of the proof of Theorem 2, which follows directly from a result in Rothe

and Firpo (2016), shows that both terms on the right-hand side of the previous equation

have mean zero, which means that τ̂kps is second-order unbiased. The orders of magnitude

of the two terms are the same as those of the asymptotic bias and the pointwise asymptotic

standard deviation of µ̂, respectively. The sum of the second order terms is minimized

if the bandwidth is chosen such that h ∝ n−1/(2(l+1)+d). As long as d < 4l + 4, such a

choice is compatible with the restrictions on the bandwidth required by the theorem. Such

a choice would also minimize the order of the integrated mean squared error of µ̂, and hence

a bandwidth satisfying this property could be estimated via cross-validation. When such a

bandwidth choice is feasible, we get that

√
n(τ̂kps − τ) − 1√

n

n
∑

i=1

(ψi(π, µ) − τ) = OP (n−(l+1)/(2(l+1)+d)).

For example, in the case of local linear regression with a single covariate, where l = d = 1,

the second order terms achieve their smallest possible magnitude OP (n−2/5) if we choose

h ∝ n−1/5.

It is instructive to compare the rate of OP (n−2/5) to analogous ones for other efficient

estimators of τ . Rothe and Firpo (2016) show that for l = d = 1 the difference between local

polynomial versions of the estimators reviewed in Section 2.2 and their asymptotic linear

representation is at best of the order OP (n−1/6) for inverse probability weighting, OP (n−3/10)

for regression adjustment, and OP (n−7/18) for the doubly robust estimator. These rates are

all slower than the one that can be achieved with knowledge of the propensity score; and

the difference would become even more pronounced in higher-dimensional settings. This

underscores how knowledge of the propensity score allows the construction of an estimator

with superior second order properties even in settings with a single covariate.

3.3. Parametric First-Stage Estimators. An additional nice feature of the estimator

τ̂kps is that it remains efficient if the estimator µ̂ is not obtained by nonparametric regres-
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sion, but based on a correctly specified parametric model. This is a consequence of general

results for double robust estimators derived for example in Robins, Rotnitzky, and Zhao

(1994) or Scharfstein, Rotnitzky, and Robins (1999). The KPS estimator differs in this re-

gard from regression adjustment and inverse probability weighting, which lose efficiency if

correct parametric restrictions are imposed on the respective nuisance function. As in the

nonparametric case, the estimator τ̂kps remains
√
n-consistent for τ , asymptotically normal,

and asymptotically unbiased; and the simple variance estimator V̂kps remains consistent for

its asymptotic variance. To formally show this, we let M = {mθ(t, x) : θ ∈ Θ} be a class of

candidates for µ that is indexed by Θ ⊂ R
2d, let µ̂ = mθ̂, where θ̂ ∈ Θ is a function of the

data, and impose the following standard regularity condition.

Assumption 5. (i) M is such that |mθ1
(t, x) − mθ2

(t, x)| ≤ h(t, x)‖θ1 − θ2‖ for all θ1, θ2

and some function h with E(|h(Ti, Xi)|2) < ∞; (ii) θ̂ = θ∗ + oP (1) for some θ∗ ∈ Θ.

This structure covers most parametric procedures that are typically used for estimating

conditional expectation functions in practice. Examples include Ordinary Least Squares

(OLS) estimates of linear regression models, and Maximum Likelihood (ML) estimates of

Probit/Logit specifications in the case of a binary outcome variable. Note that the assump-

tion does not require that µ̂ = mθ̂ is a consistent estimator of µ, but only that it converges

to a fixed probability limit mθ∗ . Moreover, the condition allows for parameter estimators

with “irregular” rates of convergence, as it only requires that θ̂ is consistent for θ∗. The

assumption yields the following result.

Theorem 3. Suppose that Assumption 1 and 5 hold. Then

√
n(τ̂kps − τ)

d→ N(0,V(ψi(π,mθ∗))) and V̂kps = V(ψi(π,mθ∗)) + oP (1).

If in addition µ = mθ∗, then V(ψi(π,mθ∗)) = Veff and thus τ̂kps reaches the semiparametric

efficiency bound.
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This result has an interesting implication for the analysis of settings where the treatment

probability does not depend on the covariates, and thus π(x) is a constant function. In this

case, which occurs for example in the context of simple randomized experiments, empirical

studies often estimate τ by a linear regression of the outcome variable on the treatment

indicator and the covariates. That is, an estimate of τ is given by τ̂ols, where

(α̂ols, τ̂ols, β̂ols) = argmin
α,τ,β

n
∑

i=1

(Yi − α− Ti · τ −X ′
iβ)2.

Simple algebra shows that τ̂ols in fact coincides with the estimator τ̂kps if a linear specification

for µ is assumed and estimated by OLS. That is, if we define µ̂(t, x) = α̂ols + tτ̂ols + x′β̂ols,

and have that π(Xi) ≡ π∗, then τ̂kps = τ̂ols. By Theorem 3, τ̂ols is thus fully efficient if

the true conditional expectation of the outcome variable is linear in the treatment indicator

and the covariates. This equivalence result does not carry over to experiments with more

complicated randomization schemes where the propensity score varies across units. In such

settings τ̂ols is generally inconsistent for τ , whereas the KPS estimator retains the properties

described in Theorem 3.

4. MONTE CARLO EVIDENCE

In this section, we report the results of a Monte Carlo experiment that despite its simplic-

ity nevertheless nicely illustrates the relevance of the theoretical results obtained above for

finite sample settings. We consider a data generating process (DPG) under which the poten-

tial outcomes are generated as Yi(1) = µ(1, Xi)+ εi and Yi(0) = 0, where µ(1, x) = (3x−1)2,

Xi ∼ U(0, 1), εi ∼ N(0, 1/2), and Xi and εi are stochastically independent; and propensity

score is π(x) = 1 − µ(1, x)2/5. The setup is therefore such that τ = .5 and that Veff ≈ 1.917.

We then estimate the ATE using simulated data sets of size n = 500 from this DGP for

the KPS estimator, the inverse probability weighting estimator (IPW), the regression ad-

justment estimator (REG), and the doubly robust estimator (DR). For each estimator, the
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Figure 4.1: Simulation Results: Variance, bias and coverage probability of associated confidence
interval with 90% nominal coverage rate for the KPS (blue line), IPW (black line), REG (red line)
and DR (purple line) estimators as a function of the bandwidth used to estimate the respective
nonparametric component(s).

respective nonparametric component is estimated via local linear regression with bandwidth

h ∈ {.025, .05, . . . , .25}. In each simulation run and each of the aforementioned procedures,

we compute both the point estimator and the corresponding standard confidence interval for

τ of the form (3.1) with nominal level α = .9.

Figure 4.1 shows the results from 10,000 replications of our Monte Carlo experiment.

The three panels display the estimators’ variance, the estimators’ bias, and the coverage

probability of the corresponding confidence intervals, as a function of the bandwidth used to

estimate the respective nonparametric component(s).8 We can see that the KPS estimator

is virtually unbiased for all values of h, that its variance is very close to the semiparametric

efficiency bound for all but the largest values of h under consideration, and that the confi-

8The IPW estimator occasionally produces some extreme outliers for smaller values of h in our simulation
setup. We exclude these outliers when calculating the summary statistics presented in Figure 4.1.

20



dence interval has approximately correct coverage probability uniformly across all bandwidth

values we consider. These observations are exactly in line with our theoretical results.

The three remaining estimators all show deviations from the predictions of classical first

order asymptotic theory, albeit to a different extent. REG and IPW are both substantially

biased outside of a very narrow range of bandwidth values, and their finite sample variance

is also well above Veff. In consequence, the corresponding confidence intervals tend to under-

cover the true parameter, with coverage probabilities as low as 55% for the REG estimator

and 77% for IPW. The DR estimator does better in terms of bias and variance than REG

and IPW, but nevertheless exhibits a noticeable bias for larger bandwidth values, which

results in moderate under-coverage of the corresponding confidence interval.

5. CONCLUSIONS

This paper shows that knowledge of the propensity score can be exploited for the construc-

tion of an estimator of the ATE that achieves the semiparametric efficiency bound and has

attractive theoretical and practical properties relative to other first order efficient procedures

that have been proposed in the literature. It thereby clarifies that while imposing knowledge

of the propensity score decreases the efficiency of many treatment effect estimators, this is

not the case universally. Indeed, the paper shows that knowledge of the propensity score is

immensely useful if it is exploited appropriately. Our results suggest that the KPS estima-

tor should be used in empirical practice whenever the propensity score can reasonably be

modeled as known, and they contribute more generally to the understanding of the role of

the propensity score for ATE estimation.

A. MATHEMATICAL APPENDIX

A.1. Proof of Theorem 1. Let λn(m) = n−1/2∑n
i=1(ψi(π,m)−E(ψi(π,m))) for any generic

function m(t, x) defined over {0, 1} × X such that E(ψi(π,m)) exists and is finite. Simple

algebra shows that E(ψi(π,m)) = τ for any such generic function m(t, x), and thus λn(m) =
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n−1/2∑n
i=1(ψi(π,m) − τ). The first statement of the theorem follows from an application of

the Central Limit Theorem to λn(µ̄) if λn(µ̂) − λn(µ̄) = oP (1). By linearity, we have that

λn(µ̂) − λn(µ̄) = λn(µ̂ − µn) + λn(µn − µ̄); and Assumption 2 implies that λn(µn − µ̄) =

OP (bn) = oP (1). Next, for any fixed m∗ ∈ M∗
n and any ǫ > 0 it holds that

P (|λn(m∗)| > ǫ) ≤ 1

ǫ
sup

m∈M∗

n

E(|λn(m)|)

.
1

ǫ

∫ an

0

√

log(N2(s,M∗
n))ds

=
a1−α/2

n c1/2
n

ǫ
,

using Markov’s inequality, the maximal inequality in Corollary 19.35 in van der Vaart (1998),

and our Assumption 3. Assumption 2 and 3 together also imply that P (µ̂ − µn ∈ M∗
n) =

1 + o(1), and thus we find that λn(µ̂− µn) = OP (a1−α/2
n c1/2

n ) = oP (1), since cn = o(aα−2
n ) by

Assumption 3. Taken together, we thus have that

λn(µ̂) − λn(µ̄) = OP (a1−α/2
n c1/2

n ) +Op(bn) = oP (1),

as claimed. The remaining statements of the theorem follow from standard arguments.

A.2. Proof of Theorem 2. The proof of this result follows directly from Lemma 3 in Rothe

and Firpo (2016), who to study the properties of double robust estimators when both the

propensity score and the conditional expectation function are estimated by local polynomial

regression.

A.3. Proof of Theorem 3. By Assumption 5, there exists a sequence dn = o(1) such that

‖θ̂ − θ∗‖ = OP (dn). Now let M̄n = {mθ ∈ M : |θ − θ∗| ≤ dn}, and note that it follows from

Example 19.7 in van der Vaart (1998) that log(N2(ǫ,M̄n)) . log(1/ǫ). By arguing as in the

proof of Theorem 1, we also find that for any fixed m∗ ∈ M̄n and any ǫ > 0 it holds that

P (|λn(m∗)| > ǫ) . dn/ǫ, and thus λn(mθ̂) − λn(mθ∗) = OP (dn) = oP (1), which implies the

statement of the theorem.
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